Whakaoti mō x, y, z
x = -\frac{231}{5} = -46\frac{1}{5} = -46.2
y = \frac{333}{5} = 66\frac{3}{5} = 66.6
z = -\frac{142}{5} = -28\frac{2}{5} = -28.4
Tohaina
Kua tāruatia ki te papatopenga
x+y+z=-8 5x+7y+3z=150 3x+5y+6z=24
Me raupapa anō ngā whārite.
x=-y-z-8
Me whakaoti te x+y+z=-8 mō x.
5\left(-y-z-8\right)+7y+3z=150 3\left(-y-z-8\right)+5y+6z=24
Whakakapia te -y-z-8 mō te x i te whārite tuarua me te tuatoru.
y=95+z z=16-\frac{2}{3}y
Me whakaoti ēnei whārite mō y me z takitahi.
z=16-\frac{2}{3}\left(95+z\right)
Whakakapia te 95+z mō te y i te whārite z=16-\frac{2}{3}y.
z=-\frac{142}{5}
Me whakaoti te z=16-\frac{2}{3}\left(95+z\right) mō z.
y=95-\frac{142}{5}
Whakakapia te -\frac{142}{5} mō te z i te whārite y=95+z.
y=\frac{333}{5}
Tātaitia te y i te y=95-\frac{142}{5}.
x=-\frac{333}{5}-\left(-\frac{142}{5}\right)-8
Whakakapia te \frac{333}{5} mō te y me te -\frac{142}{5} mō z i te whārite x=-y-z-8.
x=-\frac{231}{5}
Tātaitia te x i te x=-\frac{333}{5}-\left(-\frac{142}{5}\right)-8.
x=-\frac{231}{5} y=\frac{333}{5} z=-\frac{142}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}