Whakaoti mō x, y
x = \frac{35}{11} = 3\frac{2}{11} \approx 3.181818182
y = -\frac{18}{11} = -1\frac{7}{11} \approx -1.636363636
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+4y=3,8x+7y=14
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+4y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-4y+3
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-4y+3\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{4}{3}y+1
Whakareatia \frac{1}{3} ki te -4y+3.
8\left(-\frac{4}{3}y+1\right)+7y=14
Whakakapia te -\frac{4y}{3}+1 mō te x ki tērā atu whārite, 8x+7y=14.
-\frac{32}{3}y+8+7y=14
Whakareatia 8 ki te -\frac{4y}{3}+1.
-\frac{11}{3}y+8=14
Tāpiri -\frac{32y}{3} ki te 7y.
-\frac{11}{3}y=6
Me tango 8 mai i ngā taha e rua o te whārite.
y=-\frac{18}{11}
Whakawehea ngā taha e rua o te whārite ki te -\frac{11}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{4}{3}\left(-\frac{18}{11}\right)+1
Whakaurua te -\frac{18}{11} mō y ki x=-\frac{4}{3}y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{24}{11}+1
Whakareatia -\frac{4}{3} ki te -\frac{18}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{35}{11}
Tāpiri 1 ki te \frac{24}{11}.
x=\frac{35}{11},y=-\frac{18}{11}
Kua oti te pūnaha te whakatau.
3x+4y=3,8x+7y=14
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&4\\8&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\14\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&4\\8&7\end{matrix}\right))\left(\begin{matrix}3&4\\8&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\8&7\end{matrix}\right))\left(\begin{matrix}3\\14\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&4\\8&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\8&7\end{matrix}\right))\left(\begin{matrix}3\\14\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\8&7\end{matrix}\right))\left(\begin{matrix}3\\14\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3\times 7-4\times 8}&-\frac{4}{3\times 7-4\times 8}\\-\frac{8}{3\times 7-4\times 8}&\frac{3}{3\times 7-4\times 8}\end{matrix}\right)\left(\begin{matrix}3\\14\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{11}&\frac{4}{11}\\\frac{8}{11}&-\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}3\\14\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{11}\times 3+\frac{4}{11}\times 14\\\frac{8}{11}\times 3-\frac{3}{11}\times 14\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{11}\\-\frac{18}{11}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{35}{11},y=-\frac{18}{11}
Tangohia ngā huānga poukapa x me y.
3x+4y=3,8x+7y=14
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8\times 3x+8\times 4y=8\times 3,3\times 8x+3\times 7y=3\times 14
Kia ōrite ai a 3x me 8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
24x+32y=24,24x+21y=42
Whakarūnātia.
24x-24x+32y-21y=24-42
Me tango 24x+21y=42 mai i 24x+32y=24 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
32y-21y=24-42
Tāpiri 24x ki te -24x. Ka whakakore atu ngā kupu 24x me -24x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
11y=24-42
Tāpiri 32y ki te -21y.
11y=-18
Tāpiri 24 ki te -42.
y=-\frac{18}{11}
Whakawehea ngā taha e rua ki te 11.
8x+7\left(-\frac{18}{11}\right)=14
Whakaurua te -\frac{18}{11} mō y ki 8x+7y=14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
8x-\frac{126}{11}=14
Whakareatia 7 ki te -\frac{18}{11}.
8x=\frac{280}{11}
Me tāpiri \frac{126}{11} ki ngā taha e rua o te whārite.
x=\frac{35}{11}
Whakawehea ngā taha e rua ki te 8.
x=\frac{35}{11},y=-\frac{18}{11}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}