Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-5x=0
Whakaarohia te whārite tuarua. Tangohia te 5x mai i ngā taha e rua.
3x+4y=253,-5x+y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+4y=253
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-4y+253
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-4y+253\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{4}{3}y+\frac{253}{3}
Whakareatia \frac{1}{3} ki te -4y+253.
-5\left(-\frac{4}{3}y+\frac{253}{3}\right)+y=0
Whakakapia te \frac{-4y+253}{3} mō te x ki tērā atu whārite, -5x+y=0.
\frac{20}{3}y-\frac{1265}{3}+y=0
Whakareatia -5 ki te \frac{-4y+253}{3}.
\frac{23}{3}y-\frac{1265}{3}=0
Tāpiri \frac{20y}{3} ki te y.
\frac{23}{3}y=\frac{1265}{3}
Me tāpiri \frac{1265}{3} ki ngā taha e rua o te whārite.
y=55
Whakawehea ngā taha e rua o te whārite ki te \frac{23}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{4}{3}\times 55+\frac{253}{3}
Whakaurua te 55 mō y ki x=-\frac{4}{3}y+\frac{253}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-220+253}{3}
Whakareatia -\frac{4}{3} ki te 55.
x=11
Tāpiri \frac{253}{3} ki te -\frac{220}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=11,y=55
Kua oti te pūnaha te whakatau.
y-5x=0
Whakaarohia te whārite tuarua. Tangohia te 5x mai i ngā taha e rua.
3x+4y=253,-5x+y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&4\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}253\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&4\\-5&1\end{matrix}\right))\left(\begin{matrix}3&4\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\-5&1\end{matrix}\right))\left(\begin{matrix}253\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&4\\-5&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\-5&1\end{matrix}\right))\left(\begin{matrix}253\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\-5&1\end{matrix}\right))\left(\begin{matrix}253\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-4\left(-5\right)}&-\frac{4}{3-4\left(-5\right)}\\-\frac{-5}{3-4\left(-5\right)}&\frac{3}{3-4\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}253\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{23}&-\frac{4}{23}\\\frac{5}{23}&\frac{3}{23}\end{matrix}\right)\left(\begin{matrix}253\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{23}\times 253\\\frac{5}{23}\times 253\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\55\end{matrix}\right)
Mahia ngā tātaitanga.
x=11,y=55
Tangohia ngā huānga poukapa x me y.
y-5x=0
Whakaarohia te whārite tuarua. Tangohia te 5x mai i ngā taha e rua.
3x+4y=253,-5x+y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5\times 3x-5\times 4y=-5\times 253,3\left(-5\right)x+3y=0
Kia ōrite ai a 3x me -5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
-15x-20y=-1265,-15x+3y=0
Whakarūnātia.
-15x+15x-20y-3y=-1265
Me tango -15x+3y=0 mai i -15x-20y=-1265 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-20y-3y=-1265
Tāpiri -15x ki te 15x. Ka whakakore atu ngā kupu -15x me 15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-23y=-1265
Tāpiri -20y ki te -3y.
y=55
Whakawehea ngā taha e rua ki te -23.
-5x+55=0
Whakaurua te 55 mō y ki -5x+y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-5x=-55
Me tango 55 mai i ngā taha e rua o te whārite.
x=11
Whakawehea ngā taha e rua ki te -5.
x=11,y=55
Kua oti te pūnaha te whakatau.