Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+4y=-4,4x+3y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+4y=-4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-4y-4
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-4y-4\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{4}{3}y-\frac{4}{3}
Whakareatia \frac{1}{3} ki te -4y-4.
4\left(-\frac{4}{3}y-\frac{4}{3}\right)+3y=6
Whakakapia te \frac{-4y-4}{3} mō te x ki tērā atu whārite, 4x+3y=6.
-\frac{16}{3}y-\frac{16}{3}+3y=6
Whakareatia 4 ki te \frac{-4y-4}{3}.
-\frac{7}{3}y-\frac{16}{3}=6
Tāpiri -\frac{16y}{3} ki te 3y.
-\frac{7}{3}y=\frac{34}{3}
Me tāpiri \frac{16}{3} ki ngā taha e rua o te whārite.
y=-\frac{34}{7}
Whakawehea ngā taha e rua o te whārite ki te -\frac{7}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{4}{3}\left(-\frac{34}{7}\right)-\frac{4}{3}
Whakaurua te -\frac{34}{7} mō y ki x=-\frac{4}{3}y-\frac{4}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{136}{21}-\frac{4}{3}
Whakareatia -\frac{4}{3} ki te -\frac{34}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{36}{7}
Tāpiri -\frac{4}{3} ki te \frac{136}{21} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{36}{7},y=-\frac{34}{7}
Kua oti te pūnaha te whakatau.
3x+4y=-4,4x+3y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&4\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&4\\4&3\end{matrix}\right))\left(\begin{matrix}3&4\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&3\end{matrix}\right))\left(\begin{matrix}-4\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&4\\4&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&3\end{matrix}\right))\left(\begin{matrix}-4\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&3\end{matrix}\right))\left(\begin{matrix}-4\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-4\times 4}&-\frac{4}{3\times 3-4\times 4}\\-\frac{4}{3\times 3-4\times 4}&\frac{3}{3\times 3-4\times 4}\end{matrix}\right)\left(\begin{matrix}-4\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{7}&\frac{4}{7}\\\frac{4}{7}&-\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}-4\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{7}\left(-4\right)+\frac{4}{7}\times 6\\\frac{4}{7}\left(-4\right)-\frac{3}{7}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{36}{7}\\-\frac{34}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{36}{7},y=-\frac{34}{7}
Tangohia ngā huānga poukapa x me y.
3x+4y=-4,4x+3y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 3x+4\times 4y=4\left(-4\right),3\times 4x+3\times 3y=3\times 6
Kia ōrite ai a 3x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
12x+16y=-16,12x+9y=18
Whakarūnātia.
12x-12x+16y-9y=-16-18
Me tango 12x+9y=18 mai i 12x+16y=-16 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
16y-9y=-16-18
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7y=-16-18
Tāpiri 16y ki te -9y.
7y=-34
Tāpiri -16 ki te -18.
y=-\frac{34}{7}
Whakawehea ngā taha e rua ki te 7.
4x+3\left(-\frac{34}{7}\right)=6
Whakaurua te -\frac{34}{7} mō y ki 4x+3y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x-\frac{102}{7}=6
Whakareatia 3 ki te -\frac{34}{7}.
4x=\frac{144}{7}
Me tāpiri \frac{102}{7} ki ngā taha e rua o te whārite.
x=\frac{36}{7}
Whakawehea ngā taha e rua ki te 4.
x=\frac{36}{7},y=-\frac{34}{7}
Kua oti te pūnaha te whakatau.