Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+4-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
3x-y=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
9x-5-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
9x-y=5
Me tāpiri te 5 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
3x-y=-4,9x-y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-y=-4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=y-4
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(y-4\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{3}y-\frac{4}{3}
Whakareatia \frac{1}{3} ki te y-4.
9\left(\frac{1}{3}y-\frac{4}{3}\right)-y=5
Whakakapia te \frac{-4+y}{3} mō te x ki tērā atu whārite, 9x-y=5.
3y-12-y=5
Whakareatia 9 ki te \frac{-4+y}{3}.
2y-12=5
Tāpiri 3y ki te -y.
2y=17
Me tāpiri 12 ki ngā taha e rua o te whārite.
y=\frac{17}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{1}{3}\times \frac{17}{2}-\frac{4}{3}
Whakaurua te \frac{17}{2} mō y ki x=\frac{1}{3}y-\frac{4}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{17}{6}-\frac{4}{3}
Whakareatia \frac{1}{3} ki te \frac{17}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{3}{2}
Tāpiri -\frac{4}{3} ki te \frac{17}{6} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{3}{2},y=\frac{17}{2}
Kua oti te pūnaha te whakatau.
3x+4-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
3x-y=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
9x-5-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
9x-y=5
Me tāpiri te 5 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
3x-y=-4,9x-y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-1\\9&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-1\\9&-1\end{matrix}\right))\left(\begin{matrix}3&-1\\9&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\9&-1\end{matrix}\right))\left(\begin{matrix}-4\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-1\\9&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\9&-1\end{matrix}\right))\left(\begin{matrix}-4\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\9&-1\end{matrix}\right))\left(\begin{matrix}-4\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-9\right)}&-\frac{-1}{3\left(-1\right)-\left(-9\right)}\\-\frac{9}{3\left(-1\right)-\left(-9\right)}&\frac{3}{3\left(-1\right)-\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}-4\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{1}{6}\\-\frac{3}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-4\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\left(-4\right)+\frac{1}{6}\times 5\\-\frac{3}{2}\left(-4\right)+\frac{1}{2}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\\frac{17}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{3}{2},y=\frac{17}{2}
Tangohia ngā huānga poukapa x me y.
3x+4-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
3x-y=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
9x-5-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
9x-y=5
Me tāpiri te 5 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
3x-y=-4,9x-y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x-9x-y+y=-4-5
Me tango 9x-y=5 mai i 3x-y=-4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3x-9x=-4-5
Tāpiri -y ki te y. Ka whakakore atu ngā kupu -y me y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-6x=-4-5
Tāpiri 3x ki te -9x.
-6x=-9
Tāpiri -4 ki te -5.
x=\frac{3}{2}
Whakawehea ngā taha e rua ki te -6.
9\times \frac{3}{2}-y=5
Whakaurua te \frac{3}{2} mō x ki 9x-y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
\frac{27}{2}-y=5
Whakareatia 9 ki te \frac{3}{2}.
-y=-\frac{17}{2}
Me tango \frac{27}{2} mai i ngā taha e rua o te whārite.
y=\frac{17}{2}
Whakawehea ngā taha e rua ki te -1.
x=\frac{3}{2},y=\frac{17}{2}
Kua oti te pūnaha te whakatau.