Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+3y=12,3x+2y=13
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+3y=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-3y+12
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-3y+12\right)
Whakawehea ngā taha e rua ki te 3.
x=-y+4
Whakareatia \frac{1}{3} ki te -3y+12.
3\left(-y+4\right)+2y=13
Whakakapia te -y+4 mō te x ki tērā atu whārite, 3x+2y=13.
-3y+12+2y=13
Whakareatia 3 ki te -y+4.
-y+12=13
Tāpiri -3y ki te 2y.
-y=1
Me tango 12 mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te -1.
x=-\left(-1\right)+4
Whakaurua te -1 mō y ki x=-y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1+4
Whakareatia -1 ki te -1.
x=5
Tāpiri 4 ki te 1.
x=5,y=-1
Kua oti te pūnaha te whakatau.
3x+3y=12,3x+2y=13
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\13\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&3\\3&2\end{matrix}\right))\left(\begin{matrix}3&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\3&2\end{matrix}\right))\left(\begin{matrix}12\\13\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&3\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\3&2\end{matrix}\right))\left(\begin{matrix}12\\13\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\3&2\end{matrix}\right))\left(\begin{matrix}12\\13\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-3\times 3}&-\frac{3}{3\times 2-3\times 3}\\-\frac{3}{3\times 2-3\times 3}&\frac{3}{3\times 2-3\times 3}\end{matrix}\right)\left(\begin{matrix}12\\13\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&1\\1&-1\end{matrix}\right)\left(\begin{matrix}12\\13\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\times 12+13\\12-13\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=-1
Tangohia ngā huānga poukapa x me y.
3x+3y=12,3x+2y=13
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x-3x+3y-2y=12-13
Me tango 3x+2y=13 mai i 3x+3y=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-2y=12-13
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=12-13
Tāpiri 3y ki te -2y.
y=-1
Tāpiri 12 ki te -13.
3x+2\left(-1\right)=13
Whakaurua te -1 mō y ki 3x+2y=13. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-2=13
Whakareatia 2 ki te -1.
3x=15
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=5
Whakawehea ngā taha e rua ki te 3.
x=5,y=-1
Kua oti te pūnaha te whakatau.