Whakaoti mō x, y
x=\frac{4n}{3}-\frac{8}{9}
y=\frac{10}{3}-2n
Graph
Tohaina
Kua tāruatia ki te papatopenga
3y+6n=10,2y+3x=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3y+6n=10
Tīpakohia tētahi o ngā whārite e rua he māmā ake ki te whakaoti mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
3y=10-6n
Me tango 6n mai i ngā taha e rua o te whārite.
y=\frac{10}{3}-2n
Whakawehea ngā taha e rua ki te 3.
2\left(\frac{10}{3}-2n\right)+3x=4
Whakakapia te \frac{10}{3}-2n mō te y ki tērā atu whārite, 2y+3x=4.
\frac{20}{3}-4n+3x=4
Whakareatia 2 ki te \frac{10}{3}-2n.
3x=4n-\frac{8}{3}
Me tango \frac{20}{3}-4n mai i ngā taha e rua o te whārite.
x=\frac{4n}{3}-\frac{8}{9}
Whakawehea ngā taha e rua ki te 3.
y=\frac{10}{3}-2n,x=\frac{4n}{3}-\frac{8}{9}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}