Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+2y=4,2x+3y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+2y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-2y+4
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-2y+4\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{2}{3}y+\frac{4}{3}
Whakareatia \frac{1}{3} ki te -2y+4.
2\left(-\frac{2}{3}y+\frac{4}{3}\right)+3y=6
Whakakapia te \frac{-2y+4}{3} mō te x ki tērā atu whārite, 2x+3y=6.
-\frac{4}{3}y+\frac{8}{3}+3y=6
Whakareatia 2 ki te \frac{-2y+4}{3}.
\frac{5}{3}y+\frac{8}{3}=6
Tāpiri -\frac{4y}{3} ki te 3y.
\frac{5}{3}y=\frac{10}{3}
Me tango \frac{8}{3} mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{3}\times 2+\frac{4}{3}
Whakaurua te 2 mō y ki x=-\frac{2}{3}y+\frac{4}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-4+4}{3}
Whakareatia -\frac{2}{3} ki te 2.
x=0
Tāpiri \frac{4}{3} ki te -\frac{4}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0,y=2
Kua oti te pūnaha te whakatau.
3x+2y=4,2x+3y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&2\\2&3\end{matrix}\right))\left(\begin{matrix}3&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&3\end{matrix}\right))\left(\begin{matrix}4\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&2\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&3\end{matrix}\right))\left(\begin{matrix}4\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&3\end{matrix}\right))\left(\begin{matrix}4\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-2\times 2}&-\frac{2}{3\times 3-2\times 2}\\-\frac{2}{3\times 3-2\times 2}&\frac{3}{3\times 3-2\times 2}\end{matrix}\right)\left(\begin{matrix}4\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&-\frac{2}{5}\\-\frac{2}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}4\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 4-\frac{2}{5}\times 6\\-\frac{2}{5}\times 4+\frac{3}{5}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=2
Tangohia ngā huānga poukapa x me y.
3x+2y=4,2x+3y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\times 2y=2\times 4,3\times 2x+3\times 3y=3\times 6
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x+4y=8,6x+9y=18
Whakarūnātia.
6x-6x+4y-9y=8-18
Me tango 6x+9y=18 mai i 6x+4y=8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y-9y=8-18
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=8-18
Tāpiri 4y ki te -9y.
-5y=-10
Tāpiri 8 ki te -18.
y=2
Whakawehea ngā taha e rua ki te -5.
2x+3\times 2=6
Whakaurua te 2 mō y ki 2x+3y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+6=6
Whakareatia 3 ki te 2.
2x=0
Me tango 6 mai i ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te 2.
x=0,y=2
Kua oti te pūnaha te whakatau.