Whakaoti mō x, y
x=6
y=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+2y=32,-x+3y=15
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+2y=32
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-2y+32
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-2y+32\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{2}{3}y+\frac{32}{3}
Whakareatia \frac{1}{3} ki te -2y+32.
-\left(-\frac{2}{3}y+\frac{32}{3}\right)+3y=15
Whakakapia te \frac{-2y+32}{3} mō te x ki tērā atu whārite, -x+3y=15.
\frac{2}{3}y-\frac{32}{3}+3y=15
Whakareatia -1 ki te \frac{-2y+32}{3}.
\frac{11}{3}y-\frac{32}{3}=15
Tāpiri \frac{2y}{3} ki te 3y.
\frac{11}{3}y=\frac{77}{3}
Me tāpiri \frac{32}{3} ki ngā taha e rua o te whārite.
y=7
Whakawehea ngā taha e rua o te whārite ki te \frac{11}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{3}\times 7+\frac{32}{3}
Whakaurua te 7 mō y ki x=-\frac{2}{3}y+\frac{32}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-14+32}{3}
Whakareatia -\frac{2}{3} ki te 7.
x=6
Tāpiri \frac{32}{3} ki te -\frac{14}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=6,y=7
Kua oti te pūnaha te whakatau.
3x+2y=32,-x+3y=15
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&2\\-1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}32\\15\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&2\\-1&3\end{matrix}\right))\left(\begin{matrix}3&2\\-1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\-1&3\end{matrix}\right))\left(\begin{matrix}32\\15\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&2\\-1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\-1&3\end{matrix}\right))\left(\begin{matrix}32\\15\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\-1&3\end{matrix}\right))\left(\begin{matrix}32\\15\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-2\left(-1\right)}&-\frac{2}{3\times 3-2\left(-1\right)}\\-\frac{-1}{3\times 3-2\left(-1\right)}&\frac{3}{3\times 3-2\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}32\\15\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&-\frac{2}{11}\\\frac{1}{11}&\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}32\\15\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 32-\frac{2}{11}\times 15\\\frac{1}{11}\times 32+\frac{3}{11}\times 15\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\7\end{matrix}\right)
Mahia ngā tātaitanga.
x=6,y=7
Tangohia ngā huānga poukapa x me y.
3x+2y=32,-x+3y=15
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3x-2y=-32,3\left(-1\right)x+3\times 3y=3\times 15
Kia ōrite ai a 3x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
-3x-2y=-32,-3x+9y=45
Whakarūnātia.
-3x+3x-2y-9y=-32-45
Me tango -3x+9y=45 mai i -3x-2y=-32 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y-9y=-32-45
Tāpiri -3x ki te 3x. Ka whakakore atu ngā kupu -3x me 3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-11y=-32-45
Tāpiri -2y ki te -9y.
-11y=-77
Tāpiri -32 ki te -45.
y=7
Whakawehea ngā taha e rua ki te -11.
-x+3\times 7=15
Whakaurua te 7 mō y ki -x+3y=15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x+21=15
Whakareatia 3 ki te 7.
-x=-6
Me tango 21 mai i ngā taha e rua o te whārite.
x=6
Whakawehea ngā taha e rua ki te -1.
x=6,y=7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}