Whakaoti mō x, y
x=-\frac{3}{5}=-0.6
y = \frac{12}{5} = 2\frac{2}{5} = 2.4
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+2y=3,4x+y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+2y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-2y+3
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-2y+3\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{2}{3}y+1
Whakareatia \frac{1}{3} ki te -2y+3.
4\left(-\frac{2}{3}y+1\right)+y=0
Whakakapia te -\frac{2y}{3}+1 mō te x ki tērā atu whārite, 4x+y=0.
-\frac{8}{3}y+4+y=0
Whakareatia 4 ki te -\frac{2y}{3}+1.
-\frac{5}{3}y+4=0
Tāpiri -\frac{8y}{3} ki te y.
-\frac{5}{3}y=-4
Me tango 4 mai i ngā taha e rua o te whārite.
y=\frac{12}{5}
Whakawehea ngā taha e rua o te whārite ki te -\frac{5}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{3}\times \frac{12}{5}+1
Whakaurua te \frac{12}{5} mō y ki x=-\frac{2}{3}y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{8}{5}+1
Whakareatia -\frac{2}{3} ki te \frac{12}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{3}{5}
Tāpiri 1 ki te -\frac{8}{5}.
x=-\frac{3}{5},y=\frac{12}{5}
Kua oti te pūnaha te whakatau.
3x+2y=3,4x+y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&2\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&2\\4&1\end{matrix}\right))\left(\begin{matrix}3&2\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&1\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&2\\4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&1\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&1\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-2\times 4}&-\frac{2}{3-2\times 4}\\-\frac{4}{3-2\times 4}&\frac{3}{3-2\times 4}\end{matrix}\right)\left(\begin{matrix}3\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\\frac{4}{5}&-\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}3\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 3\\\frac{4}{5}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}\\\frac{12}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{3}{5},y=\frac{12}{5}
Tangohia ngā huānga poukapa x me y.
3x+2y=3,4x+y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 3x+4\times 2y=4\times 3,3\times 4x+3y=0
Kia ōrite ai a 3x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
12x+8y=12,12x+3y=0
Whakarūnātia.
12x-12x+8y-3y=12
Me tango 12x+3y=0 mai i 12x+8y=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8y-3y=12
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=12
Tāpiri 8y ki te -3y.
y=\frac{12}{5}
Whakawehea ngā taha e rua ki te 5.
4x+\frac{12}{5}=0
Whakaurua te \frac{12}{5} mō y ki 4x+y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x=-\frac{12}{5}
Me tango \frac{12}{5} mai i ngā taha e rua o te whārite.
x=-\frac{3}{5}
Whakawehea ngā taha e rua ki te 4.
x=-\frac{3}{5},y=\frac{12}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}