Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+2y=12,x+y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+2y=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-2y+12
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-2y+12\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{2}{3}y+4
Whakareatia \frac{1}{3} ki te -2y+12.
-\frac{2}{3}y+4+y=5
Whakakapia te -\frac{2y}{3}+4 mō te x ki tērā atu whārite, x+y=5.
\frac{1}{3}y+4=5
Tāpiri -\frac{2y}{3} ki te y.
\frac{1}{3}y=1
Me tango 4 mai i ngā taha e rua o te whārite.
y=3
Me whakarea ngā taha e rua ki te 3.
x=-\frac{2}{3}\times 3+4
Whakaurua te 3 mō y ki x=-\frac{2}{3}y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-2+4
Whakareatia -\frac{2}{3} ki te 3.
x=2
Tāpiri 4 ki te -2.
x=2,y=3
Kua oti te pūnaha te whakatau.
3x+2y=12,x+y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}3&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}12\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&2\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}12\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}12\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-2}&-\frac{2}{3-2}\\-\frac{1}{3-2}&\frac{3}{3-2}\end{matrix}\right)\left(\begin{matrix}12\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-2\\-1&3\end{matrix}\right)\left(\begin{matrix}12\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12-2\times 5\\-12+3\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=3
Tangohia ngā huānga poukapa x me y.
3x+2y=12,x+y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+2y=12,3x+3y=3\times 5
Kia ōrite ai a 3x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
3x+2y=12,3x+3y=15
Whakarūnātia.
3x-3x+2y-3y=12-15
Me tango 3x+3y=15 mai i 3x+2y=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y-3y=12-15
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=12-15
Tāpiri 2y ki te -3y.
-y=-3
Tāpiri 12 ki te -15.
y=3
Whakawehea ngā taha e rua ki te -1.
x+3=5
Whakaurua te 3 mō y ki x+y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2
Me tango 3 mai i ngā taha e rua o te whārite.
x=2,y=3
Kua oti te pūnaha te whakatau.