Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+2y=12,4x-y=11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+2y=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-2y+12
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-2y+12\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{2}{3}y+4
Whakareatia \frac{1}{3} ki te -2y+12.
4\left(-\frac{2}{3}y+4\right)-y=11
Whakakapia te -\frac{2y}{3}+4 mō te x ki tērā atu whārite, 4x-y=11.
-\frac{8}{3}y+16-y=11
Whakareatia 4 ki te -\frac{2y}{3}+4.
-\frac{11}{3}y+16=11
Tāpiri -\frac{8y}{3} ki te -y.
-\frac{11}{3}y=-5
Me tango 16 mai i ngā taha e rua o te whārite.
y=\frac{15}{11}
Whakawehea ngā taha e rua o te whārite ki te -\frac{11}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{3}\times \frac{15}{11}+4
Whakaurua te \frac{15}{11} mō y ki x=-\frac{2}{3}y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{10}{11}+4
Whakareatia -\frac{2}{3} ki te \frac{15}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{34}{11}
Tāpiri 4 ki te -\frac{10}{11}.
x=\frac{34}{11},y=\frac{15}{11}
Kua oti te pūnaha te whakatau.
3x+2y=12,4x-y=11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&2\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&2\\4&-1\end{matrix}\right))\left(\begin{matrix}3&2\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&-1\end{matrix}\right))\left(\begin{matrix}12\\11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&2\\4&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&-1\end{matrix}\right))\left(\begin{matrix}12\\11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&-1\end{matrix}\right))\left(\begin{matrix}12\\11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-2\times 4}&-\frac{2}{3\left(-1\right)-2\times 4}\\-\frac{4}{3\left(-1\right)-2\times 4}&\frac{3}{3\left(-1\right)-2\times 4}\end{matrix}\right)\left(\begin{matrix}12\\11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{2}{11}\\\frac{4}{11}&-\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}12\\11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 12+\frac{2}{11}\times 11\\\frac{4}{11}\times 12-\frac{3}{11}\times 11\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{34}{11}\\\frac{15}{11}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{34}{11},y=\frac{15}{11}
Tangohia ngā huānga poukapa x me y.
3x+2y=12,4x-y=11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 3x+4\times 2y=4\times 12,3\times 4x+3\left(-1\right)y=3\times 11
Kia ōrite ai a 3x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
12x+8y=48,12x-3y=33
Whakarūnātia.
12x-12x+8y+3y=48-33
Me tango 12x-3y=33 mai i 12x+8y=48 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8y+3y=48-33
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
11y=48-33
Tāpiri 8y ki te 3y.
11y=15
Tāpiri 48 ki te -33.
y=\frac{15}{11}
Whakawehea ngā taha e rua ki te 11.
4x-\frac{15}{11}=11
Whakaurua te \frac{15}{11} mō y ki 4x-y=11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x=\frac{136}{11}
Me tāpiri \frac{15}{11} ki ngā taha e rua o te whārite.
x=\frac{34}{11}
Whakawehea ngā taha e rua ki te 4.
x=\frac{34}{11},y=\frac{15}{11}
Kua oti te pūnaha te whakatau.