Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+2y=11,4x+9y=117
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+2y=11
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-2y+11
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-2y+11\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{2}{3}y+\frac{11}{3}
Whakareatia \frac{1}{3} ki te -2y+11.
4\left(-\frac{2}{3}y+\frac{11}{3}\right)+9y=117
Whakakapia te \frac{-2y+11}{3} mō te x ki tērā atu whārite, 4x+9y=117.
-\frac{8}{3}y+\frac{44}{3}+9y=117
Whakareatia 4 ki te \frac{-2y+11}{3}.
\frac{19}{3}y+\frac{44}{3}=117
Tāpiri -\frac{8y}{3} ki te 9y.
\frac{19}{3}y=\frac{307}{3}
Me tango \frac{44}{3} mai i ngā taha e rua o te whārite.
y=\frac{307}{19}
Whakawehea ngā taha e rua o te whārite ki te \frac{19}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{3}\times \frac{307}{19}+\frac{11}{3}
Whakaurua te \frac{307}{19} mō y ki x=-\frac{2}{3}y+\frac{11}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{614}{57}+\frac{11}{3}
Whakareatia -\frac{2}{3} ki te \frac{307}{19} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{135}{19}
Tāpiri \frac{11}{3} ki te -\frac{614}{57} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{135}{19},y=\frac{307}{19}
Kua oti te pūnaha te whakatau.
3x+2y=11,4x+9y=117
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&2\\4&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\117\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&2\\4&9\end{matrix}\right))\left(\begin{matrix}3&2\\4&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&9\end{matrix}\right))\left(\begin{matrix}11\\117\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&2\\4&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&9\end{matrix}\right))\left(\begin{matrix}11\\117\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&9\end{matrix}\right))\left(\begin{matrix}11\\117\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{3\times 9-2\times 4}&-\frac{2}{3\times 9-2\times 4}\\-\frac{4}{3\times 9-2\times 4}&\frac{3}{3\times 9-2\times 4}\end{matrix}\right)\left(\begin{matrix}11\\117\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{19}&-\frac{2}{19}\\-\frac{4}{19}&\frac{3}{19}\end{matrix}\right)\left(\begin{matrix}11\\117\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{19}\times 11-\frac{2}{19}\times 117\\-\frac{4}{19}\times 11+\frac{3}{19}\times 117\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{135}{19}\\\frac{307}{19}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{135}{19},y=\frac{307}{19}
Tangohia ngā huānga poukapa x me y.
3x+2y=11,4x+9y=117
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 3x+4\times 2y=4\times 11,3\times 4x+3\times 9y=3\times 117
Kia ōrite ai a 3x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
12x+8y=44,12x+27y=351
Whakarūnātia.
12x-12x+8y-27y=44-351
Me tango 12x+27y=351 mai i 12x+8y=44 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8y-27y=44-351
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-19y=44-351
Tāpiri 8y ki te -27y.
-19y=-307
Tāpiri 44 ki te -351.
y=\frac{307}{19}
Whakawehea ngā taha e rua ki te -19.
4x+9\times \frac{307}{19}=117
Whakaurua te \frac{307}{19} mō y ki 4x+9y=117. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+\frac{2763}{19}=117
Whakareatia 9 ki te \frac{307}{19}.
4x=-\frac{540}{19}
Me tango \frac{2763}{19} mai i ngā taha e rua o te whārite.
x=-\frac{135}{19}
Whakawehea ngā taha e rua ki te 4.
x=-\frac{135}{19},y=\frac{307}{19}
Kua oti te pūnaha te whakatau.