Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y, z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

z=-3x-2y+5
Me whakaoti te 3x+2y+z=5 mō z.
x+y+5\left(-3x-2y+5\right)=3 x-y+2\left(-3x-2y+5\right)=-2
Whakakapia te -3x-2y+5 mō te z i te whārite tuarua me te tuatoru.
y=\frac{22}{9}-\frac{14}{9}x x=-y+\frac{12}{5}
Me whakaoti ēnei whārite mō y me x takitahi.
x=-\left(\frac{22}{9}-\frac{14}{9}x\right)+\frac{12}{5}
Whakakapia te \frac{22}{9}-\frac{14}{9}x mō te y i te whārite x=-y+\frac{12}{5}.
x=\frac{2}{25}
Me whakaoti te x=-\left(\frac{22}{9}-\frac{14}{9}x\right)+\frac{12}{5} mō x.
y=\frac{22}{9}-\frac{14}{9}\times \frac{2}{25}
Whakakapia te \frac{2}{25} mō te x i te whārite y=\frac{22}{9}-\frac{14}{9}x.
y=\frac{58}{25}
Tātaitia te y i te y=\frac{22}{9}-\frac{14}{9}\times \frac{2}{25}.
z=-3\times \frac{2}{25}-2\times \frac{58}{25}+5
Whakakapia te \frac{58}{25} mō te y me te \frac{2}{25} mō x i te whārite z=-3x-2y+5.
z=\frac{3}{25}
Tātaitia te z i te z=-3\times \frac{2}{25}-2\times \frac{58}{25}+5.
x=\frac{2}{25} y=\frac{58}{25} z=\frac{3}{25}
Kua oti te pūnaha te whakatau.