Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y, z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x=-\frac{2}{3}y-\frac{5}{3}z+\frac{2}{3}
Me whakaoti te 3x+2y+5z=2 mō x.
5\left(-\frac{2}{3}y-\frac{5}{3}z+\frac{2}{3}\right)-3y-2z=4 2\left(-\frac{2}{3}y-\frac{5}{3}z+\frac{2}{3}\right)-5y-3z=14
Whakakapia te -\frac{2}{3}y-\frac{5}{3}z+\frac{2}{3} mō te x i te whārite tuarua me te tuatoru.
y=-\frac{2}{19}-\frac{31}{19}z z=-2-y
Me whakaoti ēnei whārite mō y me z takitahi.
z=-2-\left(-\frac{2}{19}-\frac{31}{19}z\right)
Whakakapia te -\frac{2}{19}-\frac{31}{19}z mō te y i te whārite z=-2-y.
z=3
Me whakaoti te z=-2-\left(-\frac{2}{19}-\frac{31}{19}z\right) mō z.
y=-\frac{2}{19}-\frac{31}{19}\times 3
Whakakapia te 3 mō te z i te whārite y=-\frac{2}{19}-\frac{31}{19}z.
y=-5
Tātaitia te y i te y=-\frac{2}{19}-\frac{31}{19}\times 3.
x=-\frac{2}{3}\left(-5\right)-\frac{5}{3}\times 3+\frac{2}{3}
Whakakapia te -5 mō te y me te 3 mō z i te whārite x=-\frac{2}{3}y-\frac{5}{3}z+\frac{2}{3}.
x=-1
Tātaitia te x i te x=-\frac{2}{3}\left(-5\right)-\frac{5}{3}\times 3+\frac{2}{3}.
x=-1 y=-5 z=3
Kua oti te pūnaha te whakatau.