Whakaoti mō x, y, z
x=2
y=\frac{1}{2}=0.5
z=-2
Tohaina
Kua tāruatia ki te papatopenga
x+2y-z=5 3x+2y+2z=3 2x-4y+z=0
Me raupapa anō ngā whārite.
x=-2y+z+5
Me whakaoti te x+2y-z=5 mō x.
3\left(-2y+z+5\right)+2y+2z=3 2\left(-2y+z+5\right)-4y+z=0
Whakakapia te -2y+z+5 mō te x i te whārite tuarua me te tuatoru.
y=\frac{5}{4}z+3 z=-\frac{10}{3}+\frac{8}{3}y
Me whakaoti ēnei whārite mō y me z takitahi.
z=-\frac{10}{3}+\frac{8}{3}\left(\frac{5}{4}z+3\right)
Whakakapia te \frac{5}{4}z+3 mō te y i te whārite z=-\frac{10}{3}+\frac{8}{3}y.
z=-2
Me whakaoti te z=-\frac{10}{3}+\frac{8}{3}\left(\frac{5}{4}z+3\right) mō z.
y=\frac{5}{4}\left(-2\right)+3
Whakakapia te -2 mō te z i te whārite y=\frac{5}{4}z+3.
y=\frac{1}{2}
Tātaitia te y i te y=\frac{5}{4}\left(-2\right)+3.
x=-2\times \frac{1}{2}-2+5
Whakakapia te \frac{1}{2} mō te y me te -2 mō z i te whārite x=-2y+z+5.
x=2
Tātaitia te x i te x=-2\times \frac{1}{2}-2+5.
x=2 y=\frac{1}{2} z=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}