Whakaoti mō x, y
x=-3
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+10y=11,-10x-8y=14
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+10y=11
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-10y+11
Me tango 10y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-10y+11\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{10}{3}y+\frac{11}{3}
Whakareatia \frac{1}{3} ki te -10y+11.
-10\left(-\frac{10}{3}y+\frac{11}{3}\right)-8y=14
Whakakapia te \frac{-10y+11}{3} mō te x ki tērā atu whārite, -10x-8y=14.
\frac{100}{3}y-\frac{110}{3}-8y=14
Whakareatia -10 ki te \frac{-10y+11}{3}.
\frac{76}{3}y-\frac{110}{3}=14
Tāpiri \frac{100y}{3} ki te -8y.
\frac{76}{3}y=\frac{152}{3}
Me tāpiri \frac{110}{3} ki ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{76}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{10}{3}\times 2+\frac{11}{3}
Whakaurua te 2 mō y ki x=-\frac{10}{3}y+\frac{11}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-20+11}{3}
Whakareatia -\frac{10}{3} ki te 2.
x=-3
Tāpiri \frac{11}{3} ki te -\frac{20}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-3,y=2
Kua oti te pūnaha te whakatau.
3x+10y=11,-10x-8y=14
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\14\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right))\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right))\left(\begin{matrix}11\\14\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&10\\-10&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right))\left(\begin{matrix}11\\14\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&10\\-10&-8\end{matrix}\right))\left(\begin{matrix}11\\14\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{3\left(-8\right)-10\left(-10\right)}&-\frac{10}{3\left(-8\right)-10\left(-10\right)}\\-\frac{-10}{3\left(-8\right)-10\left(-10\right)}&\frac{3}{3\left(-8\right)-10\left(-10\right)}\end{matrix}\right)\left(\begin{matrix}11\\14\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{19}&-\frac{5}{38}\\\frac{5}{38}&\frac{3}{76}\end{matrix}\right)\left(\begin{matrix}11\\14\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{19}\times 11-\frac{5}{38}\times 14\\\frac{5}{38}\times 11+\frac{3}{76}\times 14\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-3,y=2
Tangohia ngā huānga poukapa x me y.
3x+10y=11,-10x-8y=14
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-10\times 3x-10\times 10y=-10\times 11,3\left(-10\right)x+3\left(-8\right)y=3\times 14
Kia ōrite ai a 3x me -10x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -10 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
-30x-100y=-110,-30x-24y=42
Whakarūnātia.
-30x+30x-100y+24y=-110-42
Me tango -30x-24y=42 mai i -30x-100y=-110 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-100y+24y=-110-42
Tāpiri -30x ki te 30x. Ka whakakore atu ngā kupu -30x me 30x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-76y=-110-42
Tāpiri -100y ki te 24y.
-76y=-152
Tāpiri -110 ki te -42.
y=2
Whakawehea ngā taha e rua ki te -76.
-10x-8\times 2=14
Whakaurua te 2 mō y ki -10x-8y=14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-10x-16=14
Whakareatia -8 ki te 2.
-10x=30
Me tāpiri 16 ki ngā taha e rua o te whārite.
x=-3
Whakawehea ngā taha e rua ki te -10.
x=-3,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}