Whakaoti mō w, z
z=5
w=5
Tohaina
Kua tāruatia ki te papatopenga
3w-2z=5,w+2z=15
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3w-2z=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te w mā te wehe i te w i te taha mauī o te tohu ōrite.
3w=2z+5
Me tāpiri 2z ki ngā taha e rua o te whārite.
w=\frac{1}{3}\left(2z+5\right)
Whakawehea ngā taha e rua ki te 3.
w=\frac{2}{3}z+\frac{5}{3}
Whakareatia \frac{1}{3} ki te 2z+5.
\frac{2}{3}z+\frac{5}{3}+2z=15
Whakakapia te \frac{2z+5}{3} mō te w ki tērā atu whārite, w+2z=15.
\frac{8}{3}z+\frac{5}{3}=15
Tāpiri \frac{2z}{3} ki te 2z.
\frac{8}{3}z=\frac{40}{3}
Me tango \frac{5}{3} mai i ngā taha e rua o te whārite.
z=5
Whakawehea ngā taha e rua o te whārite ki te \frac{8}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
w=\frac{2}{3}\times 5+\frac{5}{3}
Whakaurua te 5 mō z ki w=\frac{2}{3}z+\frac{5}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō w hāngai tonu.
w=\frac{10+5}{3}
Whakareatia \frac{2}{3} ki te 5.
w=5
Tāpiri \frac{5}{3} ki te \frac{10}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
w=5,z=5
Kua oti te pūnaha te whakatau.
3w-2z=5,w+2z=15
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-2\\1&2\end{matrix}\right)\left(\begin{matrix}w\\z\end{matrix}\right)=\left(\begin{matrix}5\\15\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}3&-2\\1&2\end{matrix}\right)\left(\begin{matrix}w\\z\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}5\\15\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-2\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}w\\z\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}5\\15\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}w\\z\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}5\\15\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}w\\z\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-2\right)}&-\frac{-2}{3\times 2-\left(-2\right)}\\-\frac{1}{3\times 2-\left(-2\right)}&\frac{3}{3\times 2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}5\\15\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}w\\z\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{8}&\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}5\\15\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}w\\z\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 5+\frac{1}{4}\times 15\\-\frac{1}{8}\times 5+\frac{3}{8}\times 15\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}w\\z\end{matrix}\right)=\left(\begin{matrix}5\\5\end{matrix}\right)
Mahia ngā tātaitanga.
w=5,z=5
Tangohia ngā huānga poukapa w me z.
3w-2z=5,w+2z=15
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3w-2z=5,3w+3\times 2z=3\times 15
Kia ōrite ai a 3w me w, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
3w-2z=5,3w+6z=45
Whakarūnātia.
3w-3w-2z-6z=5-45
Me tango 3w+6z=45 mai i 3w-2z=5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2z-6z=5-45
Tāpiri 3w ki te -3w. Ka whakakore atu ngā kupu 3w me -3w, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-8z=5-45
Tāpiri -2z ki te -6z.
-8z=-40
Tāpiri 5 ki te -45.
z=5
Whakawehea ngā taha e rua ki te -8.
w+2\times 5=15
Whakaurua te 5 mō z ki w+2z=15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō w hāngai tonu.
w+10=15
Whakareatia 2 ki te 5.
w=5
Me tango 10 mai i ngā taha e rua o te whārite.
w=5,z=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}