Whakaoti mō u, z
z=3
u=4
Tohaina
Kua tāruatia ki te papatopenga
3u+z=15,u+2z=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3u+z=15
Kōwhiria tētahi o ngā whārite ka whakaotia mō te u mā te wehe i te u i te taha mauī o te tohu ōrite.
3u=-z+15
Me tango z mai i ngā taha e rua o te whārite.
u=\frac{1}{3}\left(-z+15\right)
Whakawehea ngā taha e rua ki te 3.
u=-\frac{1}{3}z+5
Whakareatia \frac{1}{3} ki te -z+15.
-\frac{1}{3}z+5+2z=10
Whakakapia te -\frac{z}{3}+5 mō te u ki tērā atu whārite, u+2z=10.
\frac{5}{3}z+5=10
Tāpiri -\frac{z}{3} ki te 2z.
\frac{5}{3}z=5
Me tango 5 mai i ngā taha e rua o te whārite.
z=3
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
u=-\frac{1}{3}\times 3+5
Whakaurua te 3 mō z ki u=-\frac{1}{3}z+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō u hāngai tonu.
u=-1+5
Whakareatia -\frac{1}{3} ki te 3.
u=4
Tāpiri 5 ki te -1.
u=4,z=3
Kua oti te pūnaha te whakatau.
3u+z=15,u+2z=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\1&2\end{matrix}\right)\left(\begin{matrix}u\\z\end{matrix}\right)=\left(\begin{matrix}15\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\1&2\end{matrix}\right))\left(\begin{matrix}3&1\\1&2\end{matrix}\right)\left(\begin{matrix}u\\z\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&2\end{matrix}\right))\left(\begin{matrix}15\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}u\\z\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&2\end{matrix}\right))\left(\begin{matrix}15\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}u\\z\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&2\end{matrix}\right))\left(\begin{matrix}15\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}u\\z\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-1}&-\frac{1}{3\times 2-1}\\-\frac{1}{3\times 2-1}&\frac{3}{3\times 2-1}\end{matrix}\right)\left(\begin{matrix}15\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}u\\z\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\-\frac{1}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}15\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}u\\z\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 15-\frac{1}{5}\times 10\\-\frac{1}{5}\times 15+\frac{3}{5}\times 10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}u\\z\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
Mahia ngā tātaitanga.
u=4,z=3
Tangohia ngā huānga poukapa u me z.
3u+z=15,u+2z=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3u+z=15,3u+3\times 2z=3\times 10
Kia ōrite ai a 3u me u, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
3u+z=15,3u+6z=30
Whakarūnātia.
3u-3u+z-6z=15-30
Me tango 3u+6z=30 mai i 3u+z=15 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
z-6z=15-30
Tāpiri 3u ki te -3u. Ka whakakore atu ngā kupu 3u me -3u, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5z=15-30
Tāpiri z ki te -6z.
-5z=-15
Tāpiri 15 ki te -30.
z=3
Whakawehea ngā taha e rua ki te -5.
u+2\times 3=10
Whakaurua te 3 mō z ki u+2z=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō u hāngai tonu.
u+6=10
Whakareatia 2 ki te 3.
u=4
Me tango 6 mai i ngā taha e rua o te whārite.
u=4,z=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}