Whakaoti mō u, x
x=-\frac{1}{5}=-0.2
u=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
3u+5x=8,5u+5x=14
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3u+5x=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te u mā te wehe i te u i te taha mauī o te tohu ōrite.
3u=-5x+8
Me tango 5x mai i ngā taha e rua o te whārite.
u=\frac{1}{3}\left(-5x+8\right)
Whakawehea ngā taha e rua ki te 3.
u=-\frac{5}{3}x+\frac{8}{3}
Whakareatia \frac{1}{3} ki te -5x+8.
5\left(-\frac{5}{3}x+\frac{8}{3}\right)+5x=14
Whakakapia te \frac{-5x+8}{3} mō te u ki tērā atu whārite, 5u+5x=14.
-\frac{25}{3}x+\frac{40}{3}+5x=14
Whakareatia 5 ki te \frac{-5x+8}{3}.
-\frac{10}{3}x+\frac{40}{3}=14
Tāpiri -\frac{25x}{3} ki te 5x.
-\frac{10}{3}x=\frac{2}{3}
Me tango \frac{40}{3} mai i ngā taha e rua o te whārite.
x=-\frac{1}{5}
Whakawehea ngā taha e rua o te whārite ki te -\frac{10}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
u=-\frac{5}{3}\left(-\frac{1}{5}\right)+\frac{8}{3}
Whakaurua te -\frac{1}{5} mō x ki u=-\frac{5}{3}x+\frac{8}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō u hāngai tonu.
u=\frac{1+8}{3}
Whakareatia -\frac{5}{3} ki te -\frac{1}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
u=3
Tāpiri \frac{8}{3} ki te \frac{1}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
u=3,x=-\frac{1}{5}
Kua oti te pūnaha te whakatau.
3u+5x=8,5u+5x=14
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&5\\5&5\end{matrix}\right)\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}8\\14\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&5\\5&5\end{matrix}\right))\left(\begin{matrix}3&5\\5&5\end{matrix}\right)\left(\begin{matrix}u\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&5\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&5\\5&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}u\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&5\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}u\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&5\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-5\times 5}&-\frac{5}{3\times 5-5\times 5}\\-\frac{5}{3\times 5-5\times 5}&\frac{3}{3\times 5-5\times 5}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 8+\frac{1}{2}\times 14\\\frac{1}{2}\times 8-\frac{3}{10}\times 14\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}3\\-\frac{1}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
u=3,x=-\frac{1}{5}
Tangohia ngā huānga poukapa u me x.
3u+5x=8,5u+5x=14
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3u-5u+5x-5x=8-14
Me tango 5u+5x=14 mai i 3u+5x=8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3u-5u=8-14
Tāpiri 5x ki te -5x. Ka whakakore atu ngā kupu 5x me -5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2u=8-14
Tāpiri 3u ki te -5u.
-2u=-6
Tāpiri 8 ki te -14.
u=3
Whakawehea ngā taha e rua ki te -2.
5\times 3+5x=14
Whakaurua te 3 mō u ki 5u+5x=14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
15+5x=14
Whakareatia 5 ki te 3.
5x=-1
Me tango 15 mai i ngā taha e rua o te whārite.
x=-\frac{1}{5}
Whakawehea ngā taha e rua ki te 5.
u=3,x=-\frac{1}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}