Whakaoti mō t, s
t = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
s = \frac{119}{12} = 9\frac{11}{12} \approx 9.916666667
Tohaina
Kua tāruatia ki te papatopenga
3t=5+3
Whakaarohia te whārite tuatahi. Me tāpiri te 3 ki ngā taha e rua.
3t=8
Tāpirihia te 5 ki te 3, ka 8.
t=\frac{8}{3}
Whakawehea ngā taha e rua ki te 3.
4s-37=\frac{8}{3}
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
4s=\frac{8}{3}+37
Me tāpiri te 37 ki ngā taha e rua.
4s=\frac{119}{3}
Tāpirihia te \frac{8}{3} ki te 37, ka \frac{119}{3}.
s=\frac{\frac{119}{3}}{4}
Whakawehea ngā taha e rua ki te 4.
s=\frac{119}{3\times 4}
Tuhia te \frac{\frac{119}{3}}{4} hei hautanga kotahi.
s=\frac{119}{12}
Whakareatia te 3 ki te 4, ka 12.
t=\frac{8}{3} s=\frac{119}{12}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}