Whakaoti mō t, u
t=\frac{1}{3}\approx 0.333333333
u=-3
Tohaina
Kua tāruatia ki te papatopenga
3t-2u=7,9t-5u=18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3t-2u=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te t mā te wehe i te t i te taha mauī o te tohu ōrite.
3t=2u+7
Me tāpiri 2u ki ngā taha e rua o te whārite.
t=\frac{1}{3}\left(2u+7\right)
Whakawehea ngā taha e rua ki te 3.
t=\frac{2}{3}u+\frac{7}{3}
Whakareatia \frac{1}{3} ki te 2u+7.
9\left(\frac{2}{3}u+\frac{7}{3}\right)-5u=18
Whakakapia te \frac{2u+7}{3} mō te t ki tērā atu whārite, 9t-5u=18.
6u+21-5u=18
Whakareatia 9 ki te \frac{2u+7}{3}.
u+21=18
Tāpiri 6u ki te -5u.
u=-3
Me tango 21 mai i ngā taha e rua o te whārite.
t=\frac{2}{3}\left(-3\right)+\frac{7}{3}
Whakaurua te -3 mō u ki t=\frac{2}{3}u+\frac{7}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō t hāngai tonu.
t=-2+\frac{7}{3}
Whakareatia \frac{2}{3} ki te -3.
t=\frac{1}{3}
Tāpiri \frac{7}{3} ki te -2.
t=\frac{1}{3},u=-3
Kua oti te pūnaha te whakatau.
3t-2u=7,9t-5u=18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-2\\9&-5\end{matrix}\right)\left(\begin{matrix}t\\u\end{matrix}\right)=\left(\begin{matrix}7\\18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-2\\9&-5\end{matrix}\right))\left(\begin{matrix}3&-2\\9&-5\end{matrix}\right)\left(\begin{matrix}t\\u\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\9&-5\end{matrix}\right))\left(\begin{matrix}7\\18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-2\\9&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}t\\u\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\9&-5\end{matrix}\right))\left(\begin{matrix}7\\18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}t\\u\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\9&-5\end{matrix}\right))\left(\begin{matrix}7\\18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}t\\u\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3\left(-5\right)-\left(-2\times 9\right)}&-\frac{-2}{3\left(-5\right)-\left(-2\times 9\right)}\\-\frac{9}{3\left(-5\right)-\left(-2\times 9\right)}&\frac{3}{3\left(-5\right)-\left(-2\times 9\right)}\end{matrix}\right)\left(\begin{matrix}7\\18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}t\\u\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3}&\frac{2}{3}\\-3&1\end{matrix}\right)\left(\begin{matrix}7\\18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}t\\u\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3}\times 7+\frac{2}{3}\times 18\\-3\times 7+18\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}t\\u\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
t=\frac{1}{3},u=-3
Tangohia ngā huānga poukapa t me u.
3t-2u=7,9t-5u=18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
9\times 3t+9\left(-2\right)u=9\times 7,3\times 9t+3\left(-5\right)u=3\times 18
Kia ōrite ai a 3t me 9t, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 9 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
27t-18u=63,27t-15u=54
Whakarūnātia.
27t-27t-18u+15u=63-54
Me tango 27t-15u=54 mai i 27t-18u=63 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-18u+15u=63-54
Tāpiri 27t ki te -27t. Ka whakakore atu ngā kupu 27t me -27t, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3u=63-54
Tāpiri -18u ki te 15u.
-3u=9
Tāpiri 63 ki te -54.
u=-3
Whakawehea ngā taha e rua ki te -3.
9t-5\left(-3\right)=18
Whakaurua te -3 mō u ki 9t-5u=18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō t hāngai tonu.
9t+15=18
Whakareatia -5 ki te -3.
9t=3
Me tango 15 mai i ngā taha e rua o te whārite.
t=\frac{1}{3}
Whakawehea ngā taha e rua ki te 9.
t=\frac{1}{3},u=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}