Tauwehe
3\left(d-14\right)\left(d-3\right)
Aromātai
3\left(d-14\right)\left(d-3\right)
Tohaina
Kua tāruatia ki te papatopenga
3\left(d^{2}-17d+42\right)
Tauwehea te 3.
a+b=-17 ab=1\times 42=42
Whakaarohia te d^{2}-17d+42. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei d^{2}+ad+bd+42. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-42 -2,-21 -3,-14 -6,-7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 42.
-1-42=-43 -2-21=-23 -3-14=-17 -6-7=-13
Tātaihia te tapeke mō ia takirua.
a=-14 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -17.
\left(d^{2}-14d\right)+\left(-3d+42\right)
Tuhia anō te d^{2}-17d+42 hei \left(d^{2}-14d\right)+\left(-3d+42\right).
d\left(d-14\right)-3\left(d-14\right)
Tauwehea te d i te tuatahi me te -3 i te rōpū tuarua.
\left(d-14\right)\left(d-3\right)
Whakatauwehea atu te kīanga pātahi d-14 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(d-14\right)\left(d-3\right)
Me tuhi anō te kīanga whakatauwehe katoa.
3d^{2}-51d+126=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
d=\frac{-\left(-51\right)±\sqrt{\left(-51\right)^{2}-4\times 3\times 126}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
d=\frac{-\left(-51\right)±\sqrt{2601-4\times 3\times 126}}{2\times 3}
Pūrua -51.
d=\frac{-\left(-51\right)±\sqrt{2601-12\times 126}}{2\times 3}
Whakareatia -4 ki te 3.
d=\frac{-\left(-51\right)±\sqrt{2601-1512}}{2\times 3}
Whakareatia -12 ki te 126.
d=\frac{-\left(-51\right)±\sqrt{1089}}{2\times 3}
Tāpiri 2601 ki te -1512.
d=\frac{-\left(-51\right)±33}{2\times 3}
Tuhia te pūtakerua o te 1089.
d=\frac{51±33}{2\times 3}
Ko te tauaro o -51 ko 51.
d=\frac{51±33}{6}
Whakareatia 2 ki te 3.
d=\frac{84}{6}
Nā, me whakaoti te whārite d=\frac{51±33}{6} ina he tāpiri te ±. Tāpiri 51 ki te 33.
d=14
Whakawehe 84 ki te 6.
d=\frac{18}{6}
Nā, me whakaoti te whārite d=\frac{51±33}{6} ina he tango te ±. Tango 33 mai i 51.
d=3
Whakawehe 18 ki te 6.
3d^{2}-51d+126=3\left(d-14\right)\left(d-3\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 14 mō te x_{1} me te 3 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}