Whakaoti mō c, d
c=-3
d=-6
Tohaina
Kua tāruatia ki te papatopenga
3c-4d=15,-2c+3d=-12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3c-4d=15
Kōwhiria tētahi o ngā whārite ka whakaotia mō te c mā te wehe i te c i te taha mauī o te tohu ōrite.
3c=4d+15
Me tāpiri 4d ki ngā taha e rua o te whārite.
c=\frac{1}{3}\left(4d+15\right)
Whakawehea ngā taha e rua ki te 3.
c=\frac{4}{3}d+5
Whakareatia \frac{1}{3} ki te 4d+15.
-2\left(\frac{4}{3}d+5\right)+3d=-12
Whakakapia te \frac{4d}{3}+5 mō te c ki tērā atu whārite, -2c+3d=-12.
-\frac{8}{3}d-10+3d=-12
Whakareatia -2 ki te \frac{4d}{3}+5.
\frac{1}{3}d-10=-12
Tāpiri -\frac{8d}{3} ki te 3d.
\frac{1}{3}d=-2
Me tāpiri 10 ki ngā taha e rua o te whārite.
d=-6
Me whakarea ngā taha e rua ki te 3.
c=\frac{4}{3}\left(-6\right)+5
Whakaurua te -6 mō d ki c=\frac{4}{3}d+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō c hāngai tonu.
c=-8+5
Whakareatia \frac{4}{3} ki te -6.
c=-3
Tāpiri 5 ki te -8.
c=-3,d=-6
Kua oti te pūnaha te whakatau.
3c-4d=15,-2c+3d=-12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-4\\-2&3\end{matrix}\right)\left(\begin{matrix}c\\d\end{matrix}\right)=\left(\begin{matrix}15\\-12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-4\\-2&3\end{matrix}\right))\left(\begin{matrix}3&-4\\-2&3\end{matrix}\right)\left(\begin{matrix}c\\d\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\-2&3\end{matrix}\right))\left(\begin{matrix}15\\-12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-4\\-2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}c\\d\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\-2&3\end{matrix}\right))\left(\begin{matrix}15\\-12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}c\\d\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\-2&3\end{matrix}\right))\left(\begin{matrix}15\\-12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}c\\d\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-4\left(-2\right)\right)}&-\frac{-4}{3\times 3-\left(-4\left(-2\right)\right)}\\-\frac{-2}{3\times 3-\left(-4\left(-2\right)\right)}&\frac{3}{3\times 3-\left(-4\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}15\\-12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}c\\d\end{matrix}\right)=\left(\begin{matrix}3&4\\2&3\end{matrix}\right)\left(\begin{matrix}15\\-12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}c\\d\end{matrix}\right)=\left(\begin{matrix}3\times 15+4\left(-12\right)\\2\times 15+3\left(-12\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}c\\d\end{matrix}\right)=\left(\begin{matrix}-3\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
c=-3,d=-6
Tangohia ngā huānga poukapa c me d.
3c-4d=15,-2c+3d=-12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\times 3c-2\left(-4\right)d=-2\times 15,3\left(-2\right)c+3\times 3d=3\left(-12\right)
Kia ōrite ai a 3c me -2c, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
-6c+8d=-30,-6c+9d=-36
Whakarūnātia.
-6c+6c+8d-9d=-30+36
Me tango -6c+9d=-36 mai i -6c+8d=-30 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8d-9d=-30+36
Tāpiri -6c ki te 6c. Ka whakakore atu ngā kupu -6c me 6c, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-d=-30+36
Tāpiri 8d ki te -9d.
-d=6
Tāpiri -30 ki te 36.
d=-6
Whakawehea ngā taha e rua ki te -1.
-2c+3\left(-6\right)=-12
Whakaurua te -6 mō d ki -2c+3d=-12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō c hāngai tonu.
-2c-18=-12
Whakareatia 3 ki te -6.
-2c=6
Me tāpiri 18 ki ngā taha e rua o te whārite.
c=-3
Whakawehea ngā taha e rua ki te -2.
c=-3,d=-6
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}