Whakaoti mō c, z
z=-3
c=0
Tohaina
Kua tāruatia ki te papatopenga
3c+5z=-15,5c+3z=-9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3c+5z=-15
Kōwhiria tētahi o ngā whārite ka whakaotia mō te c mā te wehe i te c i te taha mauī o te tohu ōrite.
3c=-5z-15
Me tango 5z mai i ngā taha e rua o te whārite.
c=\frac{1}{3}\left(-5z-15\right)
Whakawehea ngā taha e rua ki te 3.
c=-\frac{5}{3}z-5
Whakareatia \frac{1}{3} ki te -5z-15.
5\left(-\frac{5}{3}z-5\right)+3z=-9
Whakakapia te -\frac{5z}{3}-5 mō te c ki tērā atu whārite, 5c+3z=-9.
-\frac{25}{3}z-25+3z=-9
Whakareatia 5 ki te -\frac{5z}{3}-5.
-\frac{16}{3}z-25=-9
Tāpiri -\frac{25z}{3} ki te 3z.
-\frac{16}{3}z=16
Me tāpiri 25 ki ngā taha e rua o te whārite.
z=-3
Whakawehea ngā taha e rua o te whārite ki te -\frac{16}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
c=-\frac{5}{3}\left(-3\right)-5
Whakaurua te -3 mō z ki c=-\frac{5}{3}z-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō c hāngai tonu.
c=5-5
Whakareatia -\frac{5}{3} ki te -3.
c=0
Tāpiri -5 ki te 5.
c=0,z=-3
Kua oti te pūnaha te whakatau.
3c+5z=-15,5c+3z=-9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&5\\5&3\end{matrix}\right)\left(\begin{matrix}c\\z\end{matrix}\right)=\left(\begin{matrix}-15\\-9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&5\\5&3\end{matrix}\right))\left(\begin{matrix}3&5\\5&3\end{matrix}\right)\left(\begin{matrix}c\\z\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&3\end{matrix}\right))\left(\begin{matrix}-15\\-9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&5\\5&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}c\\z\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&3\end{matrix}\right))\left(\begin{matrix}-15\\-9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}c\\z\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&3\end{matrix}\right))\left(\begin{matrix}-15\\-9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}c\\z\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-5\times 5}&-\frac{5}{3\times 3-5\times 5}\\-\frac{5}{3\times 3-5\times 5}&\frac{3}{3\times 3-5\times 5}\end{matrix}\right)\left(\begin{matrix}-15\\-9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}c\\z\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{16}&\frac{5}{16}\\\frac{5}{16}&-\frac{3}{16}\end{matrix}\right)\left(\begin{matrix}-15\\-9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}c\\z\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{16}\left(-15\right)+\frac{5}{16}\left(-9\right)\\\frac{5}{16}\left(-15\right)-\frac{3}{16}\left(-9\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}c\\z\end{matrix}\right)=\left(\begin{matrix}0\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
c=0,z=-3
Tangohia ngā huānga poukapa c me z.
3c+5z=-15,5c+3z=-9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 3c+5\times 5z=5\left(-15\right),3\times 5c+3\times 3z=3\left(-9\right)
Kia ōrite ai a 3c me 5c, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
15c+25z=-75,15c+9z=-27
Whakarūnātia.
15c-15c+25z-9z=-75+27
Me tango 15c+9z=-27 mai i 15c+25z=-75 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
25z-9z=-75+27
Tāpiri 15c ki te -15c. Ka whakakore atu ngā kupu 15c me -15c, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
16z=-75+27
Tāpiri 25z ki te -9z.
16z=-48
Tāpiri -75 ki te 27.
z=-3
Whakawehea ngā taha e rua ki te 16.
5c+3\left(-3\right)=-9
Whakaurua te -3 mō z ki 5c+3z=-9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō c hāngai tonu.
5c-9=-9
Whakareatia 3 ki te -3.
5c=0
Me tāpiri 9 ki ngā taha e rua o te whārite.
c=0
Whakawehea ngā taha e rua ki te 5.
c=0,z=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}