Whakaoti mō c, x
x=1
c=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
3c+2x=5,2c+4x=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3c+2x=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te c mā te wehe i te c i te taha mauī o te tohu ōrite.
3c=-2x+5
Me tango 2x mai i ngā taha e rua o te whārite.
c=\frac{1}{3}\left(-2x+5\right)
Whakawehea ngā taha e rua ki te 3.
c=-\frac{2}{3}x+\frac{5}{3}
Whakareatia \frac{1}{3} ki te -2x+5.
2\left(-\frac{2}{3}x+\frac{5}{3}\right)+4x=6
Whakakapia te \frac{-2x+5}{3} mō te c ki tērā atu whārite, 2c+4x=6.
-\frac{4}{3}x+\frac{10}{3}+4x=6
Whakareatia 2 ki te \frac{-2x+5}{3}.
\frac{8}{3}x+\frac{10}{3}=6
Tāpiri -\frac{4x}{3} ki te 4x.
\frac{8}{3}x=\frac{8}{3}
Me tango \frac{10}{3} mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua o te whārite ki te \frac{8}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
c=\frac{-2+5}{3}
Whakaurua te 1 mō x ki c=-\frac{2}{3}x+\frac{5}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō c hāngai tonu.
c=1
Tāpiri \frac{5}{3} ki te -\frac{2}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
c=1,x=1
Kua oti te pūnaha te whakatau.
3c+2x=5,2c+4x=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&2\\2&4\end{matrix}\right)\left(\begin{matrix}c\\x\end{matrix}\right)=\left(\begin{matrix}5\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&2\\2&4\end{matrix}\right))\left(\begin{matrix}3&2\\2&4\end{matrix}\right)\left(\begin{matrix}c\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&4\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&2\\2&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}c\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&4\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}c\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&4\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}c\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-2\times 2}&-\frac{2}{3\times 4-2\times 2}\\-\frac{2}{3\times 4-2\times 2}&\frac{3}{3\times 4-2\times 2}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}c\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{4}\\-\frac{1}{4}&\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}c\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 5-\frac{1}{4}\times 6\\-\frac{1}{4}\times 5+\frac{3}{8}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}c\\x\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
c=1,x=1
Tangohia ngā huānga poukapa c me x.
3c+2x=5,2c+4x=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3c+2\times 2x=2\times 5,3\times 2c+3\times 4x=3\times 6
Kia ōrite ai a 3c me 2c, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6c+4x=10,6c+12x=18
Whakarūnātia.
6c-6c+4x-12x=10-18
Me tango 6c+12x=18 mai i 6c+4x=10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4x-12x=10-18
Tāpiri 6c ki te -6c. Ka whakakore atu ngā kupu 6c me -6c, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-8x=10-18
Tāpiri 4x ki te -12x.
-8x=-8
Tāpiri 10 ki te -18.
x=1
Whakawehea ngā taha e rua ki te -8.
2c+4=6
Whakaurua te 1 mō x ki 2c+4x=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō c hāngai tonu.
2c=2
Me tango 4 mai i ngā taha e rua o te whārite.
c=1
Whakawehea ngā taha e rua ki te 2.
c=1,x=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}