Tīpoka ki ngā ihirangi matua
Whakaoti mō a, b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3a+b=9,a+b=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3a+b=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
3a=-b+9
Me tango b mai i ngā taha e rua o te whārite.
a=\frac{1}{3}\left(-b+9\right)
Whakawehea ngā taha e rua ki te 3.
a=-\frac{1}{3}b+3
Whakareatia \frac{1}{3} ki te -b+9.
-\frac{1}{3}b+3+b=3
Whakakapia te -\frac{b}{3}+3 mō te a ki tērā atu whārite, a+b=3.
\frac{2}{3}b+3=3
Tāpiri -\frac{b}{3} ki te b.
\frac{2}{3}b=0
Me tango 3 mai i ngā taha e rua o te whārite.
b=0
Whakawehea ngā taha e rua o te whārite ki te \frac{2}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
a=3
Whakaurua te 0 mō b ki a=-\frac{1}{3}b+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=3,b=0
Kua oti te pūnaha te whakatau.
3a+b=9,a+b=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}9\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}3&1\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}9\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}9\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}9\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-1}&-\frac{1}{3-1}\\-\frac{1}{3-1}&\frac{3}{3-1}\end{matrix}\right)\left(\begin{matrix}9\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\-\frac{1}{2}&\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}9\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 9-\frac{1}{2}\times 3\\-\frac{1}{2}\times 9+\frac{3}{2}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
Mahia ngā tātaitanga.
a=3,b=0
Tangohia ngā huānga poukapa a me b.
3a+b=9,a+b=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3a-a+b-b=9-3
Me tango a+b=3 mai i 3a+b=9 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3a-a=9-3
Tāpiri b ki te -b. Ka whakakore atu ngā kupu b me -b, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2a=9-3
Tāpiri 3a ki te -a.
2a=6
Tāpiri 9 ki te -3.
a=3
Whakawehea ngā taha e rua ki te 2.
3+b=3
Whakaurua te 3 mō a ki a+b=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō b hāngai tonu.
b=0
Me tango 3 mai i ngā taha e rua o te whārite.
a=3,b=0
Kua oti te pūnaha te whakatau.