Whakaoti mō a, b
a=-\frac{4}{5}=-0.8
b=-\frac{3}{5}=-0.6
Tohaina
Kua tāruatia ki te papatopenga
3a+b=-3,2a-b=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3a+b=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
3a=-b-3
Me tango b mai i ngā taha e rua o te whārite.
a=\frac{1}{3}\left(-b-3\right)
Whakawehea ngā taha e rua ki te 3.
a=-\frac{1}{3}b-1
Whakareatia \frac{1}{3} ki te -b-3.
2\left(-\frac{1}{3}b-1\right)-b=-1
Whakakapia te -\frac{b}{3}-1 mō te a ki tērā atu whārite, 2a-b=-1.
-\frac{2}{3}b-2-b=-1
Whakareatia 2 ki te -\frac{b}{3}-1.
-\frac{5}{3}b-2=-1
Tāpiri -\frac{2b}{3} ki te -b.
-\frac{5}{3}b=1
Me tāpiri 2 ki ngā taha e rua o te whārite.
b=-\frac{3}{5}
Whakawehea ngā taha e rua o te whārite ki te -\frac{5}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
a=-\frac{1}{3}\left(-\frac{3}{5}\right)-1
Whakaurua te -\frac{3}{5} mō b ki a=-\frac{1}{3}b-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=\frac{1}{5}-1
Whakareatia -\frac{1}{3} ki te -\frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a=-\frac{4}{5}
Tāpiri -1 ki te \frac{1}{5}.
a=-\frac{4}{5},b=-\frac{3}{5}
Kua oti te pūnaha te whakatau.
3a+b=-3,2a-b=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\2&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-3\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}3&1\\2&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}-3\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}-3\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}-3\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-2}&-\frac{1}{3\left(-1\right)-2}\\-\frac{2}{3\left(-1\right)-2}&\frac{3}{3\left(-1\right)-2}\end{matrix}\right)\left(\begin{matrix}-3\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\\frac{2}{5}&-\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}-3\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-3\right)+\frac{1}{5}\left(-1\right)\\\frac{2}{5}\left(-3\right)-\frac{3}{5}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{5}\\-\frac{3}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
a=-\frac{4}{5},b=-\frac{3}{5}
Tangohia ngā huānga poukapa a me b.
3a+b=-3,2a-b=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3a+2b=2\left(-3\right),3\times 2a+3\left(-1\right)b=3\left(-1\right)
Kia ōrite ai a 3a me 2a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6a+2b=-6,6a-3b=-3
Whakarūnātia.
6a-6a+2b+3b=-6+3
Me tango 6a-3b=-3 mai i 6a+2b=-6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2b+3b=-6+3
Tāpiri 6a ki te -6a. Ka whakakore atu ngā kupu 6a me -6a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5b=-6+3
Tāpiri 2b ki te 3b.
5b=-3
Tāpiri -6 ki te 3.
b=-\frac{3}{5}
Whakawehea ngā taha e rua ki te 5.
2a-\left(-\frac{3}{5}\right)=-1
Whakaurua te -\frac{3}{5} mō b ki 2a-b=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
2a=-\frac{8}{5}
Me tango \frac{3}{5} mai i ngā taha e rua o te whārite.
a=-\frac{4}{5}
Whakawehea ngā taha e rua ki te 2.
a=-\frac{4}{5},b=-\frac{3}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}