Whakaoti mō a, b, λ
a=1
b=0
\lambda =\frac{3}{4}=0.75
Tohaina
Kua tāruatia ki te papatopenga
a=-\frac{4}{3}b+\frac{4}{3}\lambda
Me whakaoti te 3a+4b=4\lambda mō a.
4\lambda +3\left(-\frac{4}{3}b+\frac{4}{3}\lambda \right)=6
Whakakapia te -\frac{4}{3}b+\frac{4}{3}\lambda mō te a i te whārite 4\lambda +3a=6.
b=-\frac{3}{2}+2\lambda \lambda =\frac{3}{4}-\frac{3}{4}b
Me whakaoti te whārite tuarua mō b me te whārite tuatoru mō \lambda .
\lambda =\frac{3}{4}-\frac{3}{4}\left(-\frac{3}{2}+2\lambda \right)
Whakakapia te -\frac{3}{2}+2\lambda mō te b i te whārite \lambda =\frac{3}{4}-\frac{3}{4}b.
\lambda =\frac{3}{4}
Me whakaoti te \lambda =\frac{3}{4}-\frac{3}{4}\left(-\frac{3}{2}+2\lambda \right) mō \lambda .
b=-\frac{3}{2}+2\times \frac{3}{4}
Whakakapia te \frac{3}{4} mō te \lambda i te whārite b=-\frac{3}{2}+2\lambda .
b=0
Tātaitia te b i te b=-\frac{3}{2}+2\times \frac{3}{4}.
a=-\frac{4}{3}\times 0+\frac{4}{3}\times \frac{3}{4}
Whakakapia te 0 mō te b me te \frac{3}{4} mō \lambda i te whārite a=-\frac{4}{3}b+\frac{4}{3}\lambda .
a=1
Tātaitia te a i te a=-\frac{4}{3}\times 0+\frac{4}{3}\times \frac{3}{4}.
a=1 b=0 \lambda =\frac{3}{4}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}