Tīpoka ki ngā ihirangi matua
Whakaoti mō a, b, λ
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a=-\frac{4}{3}b+\frac{4}{3}\lambda
Me whakaoti te 3a+4b=4\lambda mō a.
4\lambda +3\left(-\frac{4}{3}b+\frac{4}{3}\lambda \right)=6
Whakakapia te -\frac{4}{3}b+\frac{4}{3}\lambda mō te a i te whārite 4\lambda +3a=6.
b=-\frac{3}{2}+2\lambda \lambda =\frac{3}{4}-\frac{3}{4}b
Me whakaoti te whārite tuarua mō b me te whārite tuatoru mō \lambda .
\lambda =\frac{3}{4}-\frac{3}{4}\left(-\frac{3}{2}+2\lambda \right)
Whakakapia te -\frac{3}{2}+2\lambda mō te b i te whārite \lambda =\frac{3}{4}-\frac{3}{4}b.
\lambda =\frac{3}{4}
Me whakaoti te \lambda =\frac{3}{4}-\frac{3}{4}\left(-\frac{3}{2}+2\lambda \right) mō \lambda .
b=-\frac{3}{2}+2\times \frac{3}{4}
Whakakapia te \frac{3}{4} mō te \lambda i te whārite b=-\frac{3}{2}+2\lambda .
b=0
Tātaitia te b i te b=-\frac{3}{2}+2\times \frac{3}{4}.
a=-\frac{4}{3}\times 0+\frac{4}{3}\times \frac{3}{4}
Whakakapia te 0 mō te b me te \frac{3}{4} mō \lambda i te whārite a=-\frac{4}{3}b+\frac{4}{3}\lambda .
a=1
Tātaitia te a i te a=-\frac{4}{3}\times 0+\frac{4}{3}\times \frac{3}{4}.
a=1 b=0 \lambda =\frac{3}{4}
Kua oti te pūnaha te whakatau.