Whakaoti mō a, b
a=\frac{2}{13}\approx 0.153846154
b=\frac{10}{13}\approx 0.769230769
Tohaina
Kua tāruatia ki te papatopenga
3a+2b=2,-2a+3b=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3a+2b=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
3a=-2b+2
Me tango 2b mai i ngā taha e rua o te whārite.
a=\frac{1}{3}\left(-2b+2\right)
Whakawehea ngā taha e rua ki te 3.
a=-\frac{2}{3}b+\frac{2}{3}
Whakareatia \frac{1}{3} ki te -2b+2.
-2\left(-\frac{2}{3}b+\frac{2}{3}\right)+3b=2
Whakakapia te \frac{-2b+2}{3} mō te a ki tērā atu whārite, -2a+3b=2.
\frac{4}{3}b-\frac{4}{3}+3b=2
Whakareatia -2 ki te \frac{-2b+2}{3}.
\frac{13}{3}b-\frac{4}{3}=2
Tāpiri \frac{4b}{3} ki te 3b.
\frac{13}{3}b=\frac{10}{3}
Me tāpiri \frac{4}{3} ki ngā taha e rua o te whārite.
b=\frac{10}{13}
Whakawehea ngā taha e rua o te whārite ki te \frac{13}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
a=-\frac{2}{3}\times \frac{10}{13}+\frac{2}{3}
Whakaurua te \frac{10}{13} mō b ki a=-\frac{2}{3}b+\frac{2}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=-\frac{20}{39}+\frac{2}{3}
Whakareatia -\frac{2}{3} ki te \frac{10}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a=\frac{2}{13}
Tāpiri \frac{2}{3} ki te -\frac{20}{39} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a=\frac{2}{13},b=\frac{10}{13}
Kua oti te pūnaha te whakatau.
3a+2b=2,-2a+3b=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&2\\-2&3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&2\\-2&3\end{matrix}\right))\left(\begin{matrix}3&2\\-2&3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\-2&3\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&2\\-2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\-2&3\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\-2&3\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-2\left(-2\right)}&-\frac{2}{3\times 3-2\left(-2\right)}\\-\frac{-2}{3\times 3-2\left(-2\right)}&\frac{3}{3\times 3-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}&-\frac{2}{13}\\\frac{2}{13}&\frac{3}{13}\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}\times 2-\frac{2}{13}\times 2\\\frac{2}{13}\times 2+\frac{3}{13}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\\\frac{10}{13}\end{matrix}\right)
Mahia ngā tātaitanga.
a=\frac{2}{13},b=\frac{10}{13}
Tangohia ngā huānga poukapa a me b.
3a+2b=2,-2a+3b=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\times 3a-2\times 2b=-2\times 2,3\left(-2\right)a+3\times 3b=3\times 2
Kia ōrite ai a 3a me -2a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
-6a-4b=-4,-6a+9b=6
Whakarūnātia.
-6a+6a-4b-9b=-4-6
Me tango -6a+9b=6 mai i -6a-4b=-4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4b-9b=-4-6
Tāpiri -6a ki te 6a. Ka whakakore atu ngā kupu -6a me 6a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-13b=-4-6
Tāpiri -4b ki te -9b.
-13b=-10
Tāpiri -4 ki te -6.
b=\frac{10}{13}
Whakawehea ngā taha e rua ki te -13.
-2a+3\times \frac{10}{13}=2
Whakaurua te \frac{10}{13} mō b ki -2a+3b=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
-2a+\frac{30}{13}=2
Whakareatia 3 ki te \frac{10}{13}.
-2a=-\frac{4}{13}
Me tango \frac{30}{13} mai i ngā taha e rua o te whārite.
a=\frac{2}{13}
Whakawehea ngā taha e rua ki te -2.
a=\frac{2}{13},b=\frac{10}{13}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}