Whakaoti mō A, c
A = -\frac{162}{77} = -2\frac{8}{77} \approx -2.103896104
c = \frac{1473}{77} = 19\frac{10}{77} \approx 19.12987013
Tohaina
Kua tāruatia ki te papatopenga
3A-13c=-255,31A-6c=-180
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3A-13c=-255
Kōwhiria tētahi o ngā whārite ka whakaotia mō te A mā te wehe i te A i te taha mauī o te tohu ōrite.
3A=13c-255
Me tāpiri 13c ki ngā taha e rua o te whārite.
A=\frac{1}{3}\left(13c-255\right)
Whakawehea ngā taha e rua ki te 3.
A=\frac{13}{3}c-85
Whakareatia \frac{1}{3} ki te 13c-255.
31\left(\frac{13}{3}c-85\right)-6c=-180
Whakakapia te \frac{13c}{3}-85 mō te A ki tērā atu whārite, 31A-6c=-180.
\frac{403}{3}c-2635-6c=-180
Whakareatia 31 ki te \frac{13c}{3}-85.
\frac{385}{3}c-2635=-180
Tāpiri \frac{403c}{3} ki te -6c.
\frac{385}{3}c=2455
Me tāpiri 2635 ki ngā taha e rua o te whārite.
c=\frac{1473}{77}
Whakawehea ngā taha e rua o te whārite ki te \frac{385}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
A=\frac{13}{3}\times \frac{1473}{77}-85
Whakaurua te \frac{1473}{77} mō c ki A=\frac{13}{3}c-85. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō A hāngai tonu.
A=\frac{6383}{77}-85
Whakareatia \frac{13}{3} ki te \frac{1473}{77} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
A=-\frac{162}{77}
Tāpiri -85 ki te \frac{6383}{77}.
A=-\frac{162}{77},c=\frac{1473}{77}
Kua oti te pūnaha te whakatau.
3A-13c=-255,31A-6c=-180
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-13\\31&-6\end{matrix}\right)\left(\begin{matrix}A\\c\end{matrix}\right)=\left(\begin{matrix}-255\\-180\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-13\\31&-6\end{matrix}\right))\left(\begin{matrix}3&-13\\31&-6\end{matrix}\right)\left(\begin{matrix}A\\c\end{matrix}\right)=inverse(\left(\begin{matrix}3&-13\\31&-6\end{matrix}\right))\left(\begin{matrix}-255\\-180\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-13\\31&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\c\end{matrix}\right)=inverse(\left(\begin{matrix}3&-13\\31&-6\end{matrix}\right))\left(\begin{matrix}-255\\-180\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}A\\c\end{matrix}\right)=inverse(\left(\begin{matrix}3&-13\\31&-6\end{matrix}\right))\left(\begin{matrix}-255\\-180\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}A\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{3\left(-6\right)-\left(-13\times 31\right)}&-\frac{-13}{3\left(-6\right)-\left(-13\times 31\right)}\\-\frac{31}{3\left(-6\right)-\left(-13\times 31\right)}&\frac{3}{3\left(-6\right)-\left(-13\times 31\right)}\end{matrix}\right)\left(\begin{matrix}-255\\-180\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}A\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{385}&\frac{13}{385}\\-\frac{31}{385}&\frac{3}{385}\end{matrix}\right)\left(\begin{matrix}-255\\-180\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}A\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{385}\left(-255\right)+\frac{13}{385}\left(-180\right)\\-\frac{31}{385}\left(-255\right)+\frac{3}{385}\left(-180\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}A\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{162}{77}\\\frac{1473}{77}\end{matrix}\right)
Mahia ngā tātaitanga.
A=-\frac{162}{77},c=\frac{1473}{77}
Tangohia ngā huānga poukapa A me c.
3A-13c=-255,31A-6c=-180
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
31\times 3A+31\left(-13\right)c=31\left(-255\right),3\times 31A+3\left(-6\right)c=3\left(-180\right)
Kia ōrite ai a 3A me 31A, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 31 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
93A-403c=-7905,93A-18c=-540
Whakarūnātia.
93A-93A-403c+18c=-7905+540
Me tango 93A-18c=-540 mai i 93A-403c=-7905 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-403c+18c=-7905+540
Tāpiri 93A ki te -93A. Ka whakakore atu ngā kupu 93A me -93A, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-385c=-7905+540
Tāpiri -403c ki te 18c.
-385c=-7365
Tāpiri -7905 ki te 540.
c=\frac{1473}{77}
Whakawehea ngā taha e rua ki te -385.
31A-6\times \frac{1473}{77}=-180
Whakaurua te \frac{1473}{77} mō c ki 31A-6c=-180. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō A hāngai tonu.
31A-\frac{8838}{77}=-180
Whakareatia -6 ki te \frac{1473}{77}.
31A=-\frac{5022}{77}
Me tāpiri \frac{8838}{77} ki ngā taha e rua o te whārite.
A=-\frac{162}{77}
Whakawehea ngā taha e rua ki te 31.
A=-\frac{162}{77},c=\frac{1473}{77}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}