Whakaoti mō x, y
x=-3
y=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x-15+2y=-41
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2x-5.
6x+2y=-41+15
Me tāpiri te 15 ki ngā taha e rua.
6x+2y=-26
Tāpirihia te -41 ki te 15, ka -26.
x-3y-9y=45
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 9.
x-12y=45
Pahekotia te -3y me -9y, ka -12y.
6x+2y=-26,x-12y=45
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x+2y=-26
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=-2y-26
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{6}\left(-2y-26\right)
Whakawehea ngā taha e rua ki te 6.
x=-\frac{1}{3}y-\frac{13}{3}
Whakareatia \frac{1}{6} ki te -2y-26.
-\frac{1}{3}y-\frac{13}{3}-12y=45
Whakakapia te \frac{-y-13}{3} mō te x ki tērā atu whārite, x-12y=45.
-\frac{37}{3}y-\frac{13}{3}=45
Tāpiri -\frac{y}{3} ki te -12y.
-\frac{37}{3}y=\frac{148}{3}
Me tāpiri \frac{13}{3} ki ngā taha e rua o te whārite.
y=-4
Whakawehea ngā taha e rua o te whārite ki te -\frac{37}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{3}\left(-4\right)-\frac{13}{3}
Whakaurua te -4 mō y ki x=-\frac{1}{3}y-\frac{13}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{4-13}{3}
Whakareatia -\frac{1}{3} ki te -4.
x=-3
Tāpiri -\frac{13}{3} ki te \frac{4}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-3,y=-4
Kua oti te pūnaha te whakatau.
6x-15+2y=-41
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2x-5.
6x+2y=-41+15
Me tāpiri te 15 ki ngā taha e rua.
6x+2y=-26
Tāpirihia te -41 ki te 15, ka -26.
x-3y-9y=45
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 9.
x-12y=45
Pahekotia te -3y me -9y, ka -12y.
6x+2y=-26,x-12y=45
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&2\\1&-12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-26\\45\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&2\\1&-12\end{matrix}\right))\left(\begin{matrix}6&2\\1&-12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\1&-12\end{matrix}\right))\left(\begin{matrix}-26\\45\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&2\\1&-12\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\1&-12\end{matrix}\right))\left(\begin{matrix}-26\\45\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\1&-12\end{matrix}\right))\left(\begin{matrix}-26\\45\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{12}{6\left(-12\right)-2}&-\frac{2}{6\left(-12\right)-2}\\-\frac{1}{6\left(-12\right)-2}&\frac{6}{6\left(-12\right)-2}\end{matrix}\right)\left(\begin{matrix}-26\\45\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{37}&\frac{1}{37}\\\frac{1}{74}&-\frac{3}{37}\end{matrix}\right)\left(\begin{matrix}-26\\45\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{37}\left(-26\right)+\frac{1}{37}\times 45\\\frac{1}{74}\left(-26\right)-\frac{3}{37}\times 45\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=-3,y=-4
Tangohia ngā huānga poukapa x me y.
6x-15+2y=-41
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2x-5.
6x+2y=-41+15
Me tāpiri te 15 ki ngā taha e rua.
6x+2y=-26
Tāpirihia te -41 ki te 15, ka -26.
x-3y-9y=45
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 9.
x-12y=45
Pahekotia te -3y me -9y, ka -12y.
6x+2y=-26,x-12y=45
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6x+2y=-26,6x+6\left(-12\right)y=6\times 45
Kia ōrite ai a 6x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
6x+2y=-26,6x-72y=270
Whakarūnātia.
6x-6x+2y+72y=-26-270
Me tango 6x-72y=270 mai i 6x+2y=-26 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y+72y=-26-270
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
74y=-26-270
Tāpiri 2y ki te 72y.
74y=-296
Tāpiri -26 ki te -270.
y=-4
Whakawehea ngā taha e rua ki te 74.
x-12\left(-4\right)=45
Whakaurua te -4 mō y ki x-12y=45. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+48=45
Whakareatia -12 ki te -4.
x=-3
Me tango 48 mai i ngā taha e rua o te whārite.
x=-3,y=-4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}