Whakaoti mō a, c
a=3
c=-4
Tohaina
Kua tāruatia ki te papatopenga
3a+c=5,a-c=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3a+c=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
3a=-c+5
Me tango c mai i ngā taha e rua o te whārite.
a=\frac{1}{3}\left(-c+5\right)
Whakawehea ngā taha e rua ki te 3.
a=-\frac{1}{3}c+\frac{5}{3}
Whakareatia \frac{1}{3} ki te -c+5.
-\frac{1}{3}c+\frac{5}{3}-c=7
Whakakapia te \frac{-c+5}{3} mō te a ki tērā atu whārite, a-c=7.
-\frac{4}{3}c+\frac{5}{3}=7
Tāpiri -\frac{c}{3} ki te -c.
-\frac{4}{3}c=\frac{16}{3}
Me tango \frac{5}{3} mai i ngā taha e rua o te whārite.
c=-4
Whakawehea ngā taha e rua o te whārite ki te -\frac{4}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
a=-\frac{1}{3}\left(-4\right)+\frac{5}{3}
Whakaurua te -4 mō c ki a=-\frac{1}{3}c+\frac{5}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=\frac{4+5}{3}
Whakareatia -\frac{1}{3} ki te -4.
a=3
Tāpiri \frac{5}{3} ki te \frac{4}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a=3,c=-4
Kua oti te pūnaha te whakatau.
3a+c=5,a-c=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\1&-1\end{matrix}\right)\left(\begin{matrix}a\\c\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\1&-1\end{matrix}\right))\left(\begin{matrix}3&1\\1&-1\end{matrix}\right)\left(\begin{matrix}a\\c\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&-1\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\c\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&-1\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\c\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&-1\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-1}&-\frac{1}{3\left(-1\right)-1}\\-\frac{1}{3\left(-1\right)-1}&\frac{3}{3\left(-1\right)-1}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\c\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\\frac{1}{4}&-\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\c\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 5+\frac{1}{4}\times 7\\\frac{1}{4}\times 5-\frac{3}{4}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\c\end{matrix}\right)=\left(\begin{matrix}3\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
a=3,c=-4
Tangohia ngā huānga poukapa a me c.
3a+c=5,a-c=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3a+c=5,3a+3\left(-1\right)c=3\times 7
Kia ōrite ai a 3a me a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
3a+c=5,3a-3c=21
Whakarūnātia.
3a-3a+c+3c=5-21
Me tango 3a-3c=21 mai i 3a+c=5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
c+3c=5-21
Tāpiri 3a ki te -3a. Ka whakakore atu ngā kupu 3a me -3a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
4c=5-21
Tāpiri c ki te 3c.
4c=-16
Tāpiri 5 ki te -21.
c=-4
Whakawehea ngā taha e rua ki te 4.
a-\left(-4\right)=7
Whakaurua te -4 mō c ki a-c=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=3
Me tango 4 mai i ngā taha e rua o te whārite.
a=3,c=-4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}