Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3}{2}x+\frac{7}{3}y=1,\frac{1}{4}x-\frac{7}{6}y=-\frac{3}{2}
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{3}{2}x+\frac{7}{3}y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\frac{3}{2}x=-\frac{7}{3}y+1
Me tango \frac{7y}{3} mai i ngā taha e rua o te whārite.
x=\frac{2}{3}\left(-\frac{7}{3}y+1\right)
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{14}{9}y+\frac{2}{3}
Whakareatia \frac{2}{3} ki te -\frac{7y}{3}+1.
\frac{1}{4}\left(-\frac{14}{9}y+\frac{2}{3}\right)-\frac{7}{6}y=-\frac{3}{2}
Whakakapia te -\frac{14y}{9}+\frac{2}{3} mō te x ki tērā atu whārite, \frac{1}{4}x-\frac{7}{6}y=-\frac{3}{2}.
-\frac{7}{18}y+\frac{1}{6}-\frac{7}{6}y=-\frac{3}{2}
Whakareatia \frac{1}{4} ki te -\frac{14y}{9}+\frac{2}{3}.
-\frac{14}{9}y+\frac{1}{6}=-\frac{3}{2}
Tāpiri -\frac{7y}{18} ki te -\frac{7y}{6}.
-\frac{14}{9}y=-\frac{5}{3}
Me tango \frac{1}{6} mai i ngā taha e rua o te whārite.
y=\frac{15}{14}
Whakawehea ngā taha e rua o te whārite ki te -\frac{14}{9}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{14}{9}\times \frac{15}{14}+\frac{2}{3}
Whakaurua te \frac{15}{14} mō y ki x=-\frac{14}{9}y+\frac{2}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-5+2}{3}
Whakareatia -\frac{14}{9} ki te \frac{15}{14} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1
Tāpiri \frac{2}{3} ki te -\frac{5}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=\frac{15}{14}
Kua oti te pūnaha te whakatau.
\frac{3}{2}x+\frac{7}{3}y=1,\frac{1}{4}x-\frac{7}{6}y=-\frac{3}{2}
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}\frac{3}{2}&\frac{7}{3}\\\frac{1}{4}&-\frac{7}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{3}{2}&\frac{7}{3}\\\frac{1}{4}&-\frac{7}{6}\end{matrix}\right))\left(\begin{matrix}\frac{3}{2}&\frac{7}{3}\\\frac{1}{4}&-\frac{7}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{3}{2}&\frac{7}{3}\\\frac{1}{4}&-\frac{7}{6}\end{matrix}\right))\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{3}{2}&\frac{7}{3}\\\frac{1}{4}&-\frac{7}{6}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{3}{2}&\frac{7}{3}\\\frac{1}{4}&-\frac{7}{6}\end{matrix}\right))\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{3}{2}&\frac{7}{3}\\\frac{1}{4}&-\frac{7}{6}\end{matrix}\right))\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{7}{6}}{\frac{3}{2}\left(-\frac{7}{6}\right)-\frac{7}{3}\times \frac{1}{4}}&-\frac{\frac{7}{3}}{\frac{3}{2}\left(-\frac{7}{6}\right)-\frac{7}{3}\times \frac{1}{4}}\\-\frac{\frac{1}{4}}{\frac{3}{2}\left(-\frac{7}{6}\right)-\frac{7}{3}\times \frac{1}{4}}&\frac{\frac{3}{2}}{\frac{3}{2}\left(-\frac{7}{6}\right)-\frac{7}{3}\times \frac{1}{4}}\end{matrix}\right)\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&1\\\frac{3}{28}&-\frac{9}{14}\end{matrix}\right)\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1-3}{2}\\\frac{3}{28}-\frac{9}{14}\left(-\frac{3}{2}\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\\frac{15}{14}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=\frac{15}{14}
Tangohia ngā huānga poukapa x me y.
\frac{3}{2}x+\frac{7}{3}y=1,\frac{1}{4}x-\frac{7}{6}y=-\frac{3}{2}
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{1}{4}\times \frac{3}{2}x+\frac{1}{4}\times \frac{7}{3}y=\frac{1}{4},\frac{3}{2}\times \frac{1}{4}x+\frac{3}{2}\left(-\frac{7}{6}\right)y=\frac{3}{2}\left(-\frac{3}{2}\right)
Kia ōrite ai a \frac{3x}{2} me \frac{x}{4}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{1}{4} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{3}{2}.
\frac{3}{8}x+\frac{7}{12}y=\frac{1}{4},\frac{3}{8}x-\frac{7}{4}y=-\frac{9}{4}
Whakarūnātia.
\frac{3}{8}x-\frac{3}{8}x+\frac{7}{12}y+\frac{7}{4}y=\frac{1+9}{4}
Me tango \frac{3}{8}x-\frac{7}{4}y=-\frac{9}{4} mai i \frac{3}{8}x+\frac{7}{12}y=\frac{1}{4} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{7}{12}y+\frac{7}{4}y=\frac{1+9}{4}
Tāpiri \frac{3x}{8} ki te -\frac{3x}{8}. Ka whakakore atu ngā kupu \frac{3x}{8} me -\frac{3x}{8}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{7}{3}y=\frac{1+9}{4}
Tāpiri \frac{7y}{12} ki te \frac{7y}{4}.
\frac{7}{3}y=\frac{5}{2}
Tāpiri \frac{1}{4} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{15}{14}
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
\frac{1}{4}x-\frac{7}{6}\times \frac{15}{14}=-\frac{3}{2}
Whakaurua te \frac{15}{14} mō y ki \frac{1}{4}x-\frac{7}{6}y=-\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\frac{1}{4}x-\frac{5}{4}=-\frac{3}{2}
Whakareatia -\frac{7}{6} ki te \frac{15}{14} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\frac{1}{4}x=-\frac{1}{4}
Me tāpiri \frac{5}{4} ki ngā taha e rua o te whārite.
x=-1
Me whakarea ngā taha e rua ki te 4.
x=-1,y=\frac{15}{14}
Kua oti te pūnaha te whakatau.