Whakaoti mō x, y
x=\frac{1}{4}=0.25
y=\frac{1}{3}\approx 0.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{2}x+6y=\frac{19}{8},\frac{1}{2}x-9y=-\frac{23}{8}
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{3}{2}x+6y=\frac{19}{8}
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\frac{3}{2}x=-6y+\frac{19}{8}
Me tango 6y mai i ngā taha e rua o te whārite.
x=\frac{2}{3}\left(-6y+\frac{19}{8}\right)
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-4y+\frac{19}{12}
Whakareatia \frac{2}{3} ki te -6y+\frac{19}{8}.
\frac{1}{2}\left(-4y+\frac{19}{12}\right)-9y=-\frac{23}{8}
Whakakapia te -4y+\frac{19}{12} mō te x ki tērā atu whārite, \frac{1}{2}x-9y=-\frac{23}{8}.
-2y+\frac{19}{24}-9y=-\frac{23}{8}
Whakareatia \frac{1}{2} ki te -4y+\frac{19}{12}.
-11y+\frac{19}{24}=-\frac{23}{8}
Tāpiri -2y ki te -9y.
-11y=-\frac{11}{3}
Me tango \frac{19}{24} mai i ngā taha e rua o te whārite.
y=\frac{1}{3}
Whakawehea ngā taha e rua ki te -11.
x=-4\times \frac{1}{3}+\frac{19}{12}
Whakaurua te \frac{1}{3} mō y ki x=-4y+\frac{19}{12}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{4}{3}+\frac{19}{12}
Whakareatia -4 ki te \frac{1}{3}.
x=\frac{1}{4}
Tāpiri \frac{19}{12} ki te -\frac{4}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{4},y=\frac{1}{3}
Kua oti te pūnaha te whakatau.
\frac{3}{2}x+6y=\frac{19}{8},\frac{1}{2}x-9y=-\frac{23}{8}
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}\frac{3}{2}&6\\\frac{1}{2}&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19}{8}\\-\frac{23}{8}\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{3}{2}&6\\\frac{1}{2}&-9\end{matrix}\right))\left(\begin{matrix}\frac{3}{2}&6\\\frac{1}{2}&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{3}{2}&6\\\frac{1}{2}&-9\end{matrix}\right))\left(\begin{matrix}\frac{19}{8}\\-\frac{23}{8}\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{3}{2}&6\\\frac{1}{2}&-9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{3}{2}&6\\\frac{1}{2}&-9\end{matrix}\right))\left(\begin{matrix}\frac{19}{8}\\-\frac{23}{8}\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{3}{2}&6\\\frac{1}{2}&-9\end{matrix}\right))\left(\begin{matrix}\frac{19}{8}\\-\frac{23}{8}\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{\frac{3}{2}\left(-9\right)-6\times \frac{1}{2}}&-\frac{6}{\frac{3}{2}\left(-9\right)-6\times \frac{1}{2}}\\-\frac{\frac{1}{2}}{\frac{3}{2}\left(-9\right)-6\times \frac{1}{2}}&\frac{\frac{3}{2}}{\frac{3}{2}\left(-9\right)-6\times \frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}\frac{19}{8}\\-\frac{23}{8}\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{11}&\frac{4}{11}\\\frac{1}{33}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}\frac{19}{8}\\-\frac{23}{8}\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{11}\times \frac{19}{8}+\frac{4}{11}\left(-\frac{23}{8}\right)\\\frac{1}{33}\times \frac{19}{8}-\frac{1}{11}\left(-\frac{23}{8}\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\\\frac{1}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{4},y=\frac{1}{3}
Tangohia ngā huānga poukapa x me y.
\frac{3}{2}x+6y=\frac{19}{8},\frac{1}{2}x-9y=-\frac{23}{8}
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{1}{2}\times \frac{3}{2}x+\frac{1}{2}\times 6y=\frac{1}{2}\times \frac{19}{8},\frac{3}{2}\times \frac{1}{2}x+\frac{3}{2}\left(-9\right)y=\frac{3}{2}\left(-\frac{23}{8}\right)
Kia ōrite ai a \frac{3x}{2} me \frac{x}{2}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{1}{2} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{3}{2}.
\frac{3}{4}x+3y=\frac{19}{16},\frac{3}{4}x-\frac{27}{2}y=-\frac{69}{16}
Whakarūnātia.
\frac{3}{4}x-\frac{3}{4}x+3y+\frac{27}{2}y=\frac{19+69}{16}
Me tango \frac{3}{4}x-\frac{27}{2}y=-\frac{69}{16} mai i \frac{3}{4}x+3y=\frac{19}{16} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y+\frac{27}{2}y=\frac{19+69}{16}
Tāpiri \frac{3x}{4} ki te -\frac{3x}{4}. Ka whakakore atu ngā kupu \frac{3x}{4} me -\frac{3x}{4}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{33}{2}y=\frac{19+69}{16}
Tāpiri 3y ki te \frac{27y}{2}.
\frac{33}{2}y=\frac{11}{2}
Tāpiri \frac{19}{16} ki te \frac{69}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{1}{3}
Whakawehea ngā taha e rua o te whārite ki te \frac{33}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
\frac{1}{2}x-9\times \frac{1}{3}=-\frac{23}{8}
Whakaurua te \frac{1}{3} mō y ki \frac{1}{2}x-9y=-\frac{23}{8}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\frac{1}{2}x-3=-\frac{23}{8}
Whakareatia -9 ki te \frac{1}{3}.
\frac{1}{2}x=\frac{1}{8}
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=\frac{1}{4}
Me whakarea ngā taha e rua ki te 2.
x=\frac{1}{4},y=\frac{1}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}