Whakaoti mō x, y
x = \frac{8}{5} = 1\frac{3}{5} = 1.6
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
25x+16y=72,-5x+4y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
25x+16y=72
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
25x=-16y+72
Me tango 16y mai i ngā taha e rua o te whārite.
x=\frac{1}{25}\left(-16y+72\right)
Whakawehea ngā taha e rua ki te 25.
x=-\frac{16}{25}y+\frac{72}{25}
Whakareatia \frac{1}{25} ki te -16y+72.
-5\left(-\frac{16}{25}y+\frac{72}{25}\right)+4y=0
Whakakapia te \frac{-16y+72}{25} mō te x ki tērā atu whārite, -5x+4y=0.
\frac{16}{5}y-\frac{72}{5}+4y=0
Whakareatia -5 ki te \frac{-16y+72}{25}.
\frac{36}{5}y-\frac{72}{5}=0
Tāpiri \frac{16y}{5} ki te 4y.
\frac{36}{5}y=\frac{72}{5}
Me tāpiri \frac{72}{5} ki ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{36}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{16}{25}\times 2+\frac{72}{25}
Whakaurua te 2 mō y ki x=-\frac{16}{25}y+\frac{72}{25}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-32+72}{25}
Whakareatia -\frac{16}{25} ki te 2.
x=\frac{8}{5}
Tāpiri \frac{72}{25} ki te -\frac{32}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{8}{5},y=2
Kua oti te pūnaha te whakatau.
25x+16y=72,-5x+4y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}25&16\\-5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}72\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}25&16\\-5&4\end{matrix}\right))\left(\begin{matrix}25&16\\-5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}25&16\\-5&4\end{matrix}\right))\left(\begin{matrix}72\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}25&16\\-5&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}25&16\\-5&4\end{matrix}\right))\left(\begin{matrix}72\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}25&16\\-5&4\end{matrix}\right))\left(\begin{matrix}72\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25\times 4-16\left(-5\right)}&-\frac{16}{25\times 4-16\left(-5\right)}\\-\frac{-5}{25\times 4-16\left(-5\right)}&\frac{25}{25\times 4-16\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}72\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{45}&-\frac{4}{45}\\\frac{1}{36}&\frac{5}{36}\end{matrix}\right)\left(\begin{matrix}72\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{45}\times 72\\\frac{1}{36}\times 72\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5}\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{8}{5},y=2
Tangohia ngā huānga poukapa x me y.
25x+16y=72,-5x+4y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5\times 25x-5\times 16y=-5\times 72,25\left(-5\right)x+25\times 4y=0
Kia ōrite ai a 25x me -5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 25.
-125x-80y=-360,-125x+100y=0
Whakarūnātia.
-125x+125x-80y-100y=-360
Me tango -125x+100y=0 mai i -125x-80y=-360 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-80y-100y=-360
Tāpiri -125x ki te 125x. Ka whakakore atu ngā kupu -125x me 125x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-180y=-360
Tāpiri -80y ki te -100y.
y=2
Whakawehea ngā taha e rua ki te -180.
-5x+4\times 2=0
Whakaurua te 2 mō y ki -5x+4y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-5x+8=0
Whakareatia 4 ki te 2.
-5x=-8
Me tango 8 mai i ngā taha e rua o te whārite.
x=\frac{8}{5}
Whakawehea ngā taha e rua ki te -5.
x=\frac{8}{5},y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}