Whakaoti mō x, y, z
x=\frac{1763}{107600}\approx 0.016384758
y=\frac{5269}{107600}\approx 0.048968401
z=-\frac{1839}{107600}\approx -0.017091078
Tohaina
Kua tāruatia ki te papatopenga
x=\frac{1}{50}-\frac{1}{23}y+\frac{2}{23}z
Me whakaoti te 2300x+100y-200z=46 mō x.
100\left(\frac{1}{50}-\frac{1}{23}y+\frac{2}{23}z\right)+1500y+1000z=58 -200\left(\frac{1}{50}-\frac{1}{23}y+\frac{2}{23}z\right)+1000y+3200z=-9
Whakakapia te \frac{1}{50}-\frac{1}{23}y+\frac{2}{23}z mō te x i te whārite tuarua me te tuatoru.
y=\frac{161}{4300}-\frac{29}{43}z z=-\frac{23}{14640}-\frac{58}{183}y
Me whakaoti ēnei whārite mō y me z takitahi.
z=-\frac{23}{14640}-\frac{58}{183}\left(\frac{161}{4300}-\frac{29}{43}z\right)
Whakakapia te \frac{161}{4300}-\frac{29}{43}z mō te y i te whārite z=-\frac{23}{14640}-\frac{58}{183}y.
z=-\frac{1839}{107600}
Me whakaoti te z=-\frac{23}{14640}-\frac{58}{183}\left(\frac{161}{4300}-\frac{29}{43}z\right) mō z.
y=\frac{161}{4300}-\frac{29}{43}\left(-\frac{1839}{107600}\right)
Whakakapia te -\frac{1839}{107600} mō te z i te whārite y=\frac{161}{4300}-\frac{29}{43}z.
y=\frac{5269}{107600}
Tātaitia te y i te y=\frac{161}{4300}-\frac{29}{43}\left(-\frac{1839}{107600}\right).
x=\frac{1}{50}-\frac{1}{23}\times \frac{5269}{107600}+\frac{2}{23}\left(-\frac{1839}{107600}\right)
Whakakapia te \frac{5269}{107600} mō te y me te -\frac{1839}{107600} mō z i te whārite x=\frac{1}{50}-\frac{1}{23}y+\frac{2}{23}z.
x=\frac{1763}{107600}
Tātaitia te x i te x=\frac{1}{50}-\frac{1}{23}\times \frac{5269}{107600}+\frac{2}{23}\left(-\frac{1839}{107600}\right).
x=\frac{1763}{107600} y=\frac{5269}{107600} z=-\frac{1839}{107600}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}