Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

23x+7y=13,101x+73y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
23x+7y=13
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
23x=-7y+13
Me tango 7y mai i ngā taha e rua o te whārite.
x=\frac{1}{23}\left(-7y+13\right)
Whakawehea ngā taha e rua ki te 23.
x=-\frac{7}{23}y+\frac{13}{23}
Whakareatia \frac{1}{23} ki te -7y+13.
101\left(-\frac{7}{23}y+\frac{13}{23}\right)+73y=1
Whakakapia te \frac{-7y+13}{23} mō te x ki tērā atu whārite, 101x+73y=1.
-\frac{707}{23}y+\frac{1313}{23}+73y=1
Whakareatia 101 ki te \frac{-7y+13}{23}.
\frac{972}{23}y+\frac{1313}{23}=1
Tāpiri -\frac{707y}{23} ki te 73y.
\frac{972}{23}y=-\frac{1290}{23}
Me tango \frac{1313}{23} mai i ngā taha e rua o te whārite.
y=-\frac{215}{162}
Whakawehea ngā taha e rua o te whārite ki te \frac{972}{23}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{7}{23}\left(-\frac{215}{162}\right)+\frac{13}{23}
Whakaurua te -\frac{215}{162} mō y ki x=-\frac{7}{23}y+\frac{13}{23}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{1505}{3726}+\frac{13}{23}
Whakareatia -\frac{7}{23} ki te -\frac{215}{162} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{157}{162}
Tāpiri \frac{13}{23} ki te \frac{1505}{3726} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{157}{162},y=-\frac{215}{162}
Kua oti te pūnaha te whakatau.
23x+7y=13,101x+73y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}23&7\\101&73\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}23&7\\101&73\end{matrix}\right))\left(\begin{matrix}23&7\\101&73\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}23&7\\101&73\end{matrix}\right))\left(\begin{matrix}13\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}23&7\\101&73\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}23&7\\101&73\end{matrix}\right))\left(\begin{matrix}13\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}23&7\\101&73\end{matrix}\right))\left(\begin{matrix}13\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{73}{23\times 73-7\times 101}&-\frac{7}{23\times 73-7\times 101}\\-\frac{101}{23\times 73-7\times 101}&\frac{23}{23\times 73-7\times 101}\end{matrix}\right)\left(\begin{matrix}13\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{73}{972}&-\frac{7}{972}\\-\frac{101}{972}&\frac{23}{972}\end{matrix}\right)\left(\begin{matrix}13\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{73}{972}\times 13-\frac{7}{972}\\-\frac{101}{972}\times 13+\frac{23}{972}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{157}{162}\\-\frac{215}{162}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{157}{162},y=-\frac{215}{162}
Tangohia ngā huānga poukapa x me y.
23x+7y=13,101x+73y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
101\times 23x+101\times 7y=101\times 13,23\times 101x+23\times 73y=23
Kia ōrite ai a 23x me 101x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 101 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 23.
2323x+707y=1313,2323x+1679y=23
Whakarūnātia.
2323x-2323x+707y-1679y=1313-23
Me tango 2323x+1679y=23 mai i 2323x+707y=1313 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
707y-1679y=1313-23
Tāpiri 2323x ki te -2323x. Ka whakakore atu ngā kupu 2323x me -2323x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-972y=1313-23
Tāpiri 707y ki te -1679y.
-972y=1290
Tāpiri 1313 ki te -23.
y=-\frac{215}{162}
Whakawehea ngā taha e rua ki te -972.
101x+73\left(-\frac{215}{162}\right)=1
Whakaurua te -\frac{215}{162} mō y ki 101x+73y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
101x-\frac{15695}{162}=1
Whakareatia 73 ki te -\frac{215}{162}.
101x=\frac{15857}{162}
Me tāpiri \frac{15695}{162} ki ngā taha e rua o te whārite.
x=\frac{157}{162}
Whakawehea ngā taha e rua ki te 101.
x=\frac{157}{162},y=-\frac{215}{162}
Kua oti te pūnaha te whakatau.