Whakaoti mō x, y
x = \frac{146}{49} = 2\frac{48}{49} \approx 2.979591837
y = -\frac{762}{49} = -15\frac{27}{49} \approx -15.551020408
Graph
Tohaina
Kua tāruatia ki te papatopenga
22x+y=50,27x-y=96
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
22x+y=50
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
22x=-y+50
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{22}\left(-y+50\right)
Whakawehea ngā taha e rua ki te 22.
x=-\frac{1}{22}y+\frac{25}{11}
Whakareatia \frac{1}{22} ki te -y+50.
27\left(-\frac{1}{22}y+\frac{25}{11}\right)-y=96
Whakakapia te -\frac{y}{22}+\frac{25}{11} mō te x ki tērā atu whārite, 27x-y=96.
-\frac{27}{22}y+\frac{675}{11}-y=96
Whakareatia 27 ki te -\frac{y}{22}+\frac{25}{11}.
-\frac{49}{22}y+\frac{675}{11}=96
Tāpiri -\frac{27y}{22} ki te -y.
-\frac{49}{22}y=\frac{381}{11}
Me tango \frac{675}{11} mai i ngā taha e rua o te whārite.
y=-\frac{762}{49}
Whakawehea ngā taha e rua o te whārite ki te -\frac{49}{22}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{22}\left(-\frac{762}{49}\right)+\frac{25}{11}
Whakaurua te -\frac{762}{49} mō y ki x=-\frac{1}{22}y+\frac{25}{11}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{381}{539}+\frac{25}{11}
Whakareatia -\frac{1}{22} ki te -\frac{762}{49} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{146}{49}
Tāpiri \frac{25}{11} ki te \frac{381}{539} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{146}{49},y=-\frac{762}{49}
Kua oti te pūnaha te whakatau.
22x+y=50,27x-y=96
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}22&1\\27&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\96\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}22&1\\27&-1\end{matrix}\right))\left(\begin{matrix}22&1\\27&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}22&1\\27&-1\end{matrix}\right))\left(\begin{matrix}50\\96\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}22&1\\27&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}22&1\\27&-1\end{matrix}\right))\left(\begin{matrix}50\\96\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}22&1\\27&-1\end{matrix}\right))\left(\begin{matrix}50\\96\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{22\left(-1\right)-27}&-\frac{1}{22\left(-1\right)-27}\\-\frac{27}{22\left(-1\right)-27}&\frac{22}{22\left(-1\right)-27}\end{matrix}\right)\left(\begin{matrix}50\\96\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{49}&\frac{1}{49}\\\frac{27}{49}&-\frac{22}{49}\end{matrix}\right)\left(\begin{matrix}50\\96\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{49}\times 50+\frac{1}{49}\times 96\\\frac{27}{49}\times 50-\frac{22}{49}\times 96\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{146}{49}\\-\frac{762}{49}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{146}{49},y=-\frac{762}{49}
Tangohia ngā huānga poukapa x me y.
22x+y=50,27x-y=96
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
27\times 22x+27y=27\times 50,22\times 27x+22\left(-1\right)y=22\times 96
Kia ōrite ai a 22x me 27x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 27 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 22.
594x+27y=1350,594x-22y=2112
Whakarūnātia.
594x-594x+27y+22y=1350-2112
Me tango 594x-22y=2112 mai i 594x+27y=1350 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
27y+22y=1350-2112
Tāpiri 594x ki te -594x. Ka whakakore atu ngā kupu 594x me -594x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
49y=1350-2112
Tāpiri 27y ki te 22y.
49y=-762
Tāpiri 1350 ki te -2112.
y=-\frac{762}{49}
Whakawehea ngā taha e rua ki te 49.
27x-\left(-\frac{762}{49}\right)=96
Whakaurua te -\frac{762}{49} mō y ki 27x-y=96. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
27x=\frac{3942}{49}
Me tango \frac{762}{49} mai i ngā taha e rua o te whārite.
x=\frac{146}{49}
Whakawehea ngā taha e rua ki te 27.
x=\frac{146}{49},y=-\frac{762}{49}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}