Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

217x+13ny=913,131x+217y=827
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
217x+13ny=913
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
217x=\left(-13n\right)y+913
Me tango 13ny mai i ngā taha e rua o te whārite.
x=\frac{1}{217}\left(\left(-13n\right)y+913\right)
Whakawehea ngā taha e rua ki te 217.
x=\left(-\frac{13n}{217}\right)y+\frac{913}{217}
Whakareatia \frac{1}{217} ki te -13ny+913.
131\left(\left(-\frac{13n}{217}\right)y+\frac{913}{217}\right)+217y=827
Whakakapia te \frac{-13ny+913}{217} mō te x ki tērā atu whārite, 131x+217y=827.
\left(-\frac{1703n}{217}\right)y+\frac{119603}{217}+217y=827
Whakareatia 131 ki te \frac{-13ny+913}{217}.
\left(-\frac{1703n}{217}+217\right)y+\frac{119603}{217}=827
Tāpiri -\frac{1703ny}{217} ki te 217y.
\left(-\frac{1703n}{217}+217\right)y=\frac{59856}{217}
Me tango \frac{119603}{217} mai i ngā taha e rua o te whārite.
y=\frac{59856}{47089-1703n}
Whakawehea ngā taha e rua ki te -\frac{1703n}{217}+217.
x=\left(-\frac{13n}{217}\right)\times \frac{59856}{47089-1703n}+\frac{913}{217}
Whakaurua te \frac{59856}{47089-1703n} mō y ki x=\left(-\frac{13n}{217}\right)y+\frac{913}{217}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{778128n}{217\left(47089-1703n\right)}+\frac{913}{217}
Whakareatia -\frac{13n}{217} ki te \frac{59856}{47089-1703n}.
x=\frac{198121-10751n}{47089-1703n}
Tāpiri \frac{913}{217} ki te -\frac{778128n}{217\left(47089-1703n\right)}.
x=\frac{198121-10751n}{47089-1703n},y=\frac{59856}{47089-1703n}
Kua oti te pūnaha te whakatau.
217x+13ny=913,131x+217y=827
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}217&13n\\131&217\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}913\\827\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}217&13n\\131&217\end{matrix}\right))\left(\begin{matrix}217&13n\\131&217\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}217&13n\\131&217\end{matrix}\right))\left(\begin{matrix}913\\827\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}217&13n\\131&217\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}217&13n\\131&217\end{matrix}\right))\left(\begin{matrix}913\\827\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}217&13n\\131&217\end{matrix}\right))\left(\begin{matrix}913\\827\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{217}{217\times 217-13n\times 131}&-\frac{13n}{217\times 217-13n\times 131}\\-\frac{131}{217\times 217-13n\times 131}&\frac{217}{217\times 217-13n\times 131}\end{matrix}\right)\left(\begin{matrix}913\\827\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{217}{47089-1703n}&-\frac{13n}{47089-1703n}\\-\frac{131}{47089-1703n}&\frac{217}{47089-1703n}\end{matrix}\right)\left(\begin{matrix}913\\827\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{217}{47089-1703n}\times 913+\left(-\frac{13n}{47089-1703n}\right)\times 827\\\left(-\frac{131}{47089-1703n}\right)\times 913+\frac{217}{47089-1703n}\times 827\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10751n-198121}{47089-1703n}\\\frac{59856}{47089-1703n}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{10751n-198121}{47089-1703n},y=\frac{59856}{47089-1703n}
Tangohia ngā huānga poukapa x me y.
217x+13ny=913,131x+217y=827
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
131\times 217x+131\times 13ny=131\times 913,217\times 131x+217\times 217y=217\times 827
Kia ōrite ai a 217x me 131x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 131 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 217.
28427x+1703ny=119603,28427x+47089y=179459
Whakarūnātia.
28427x-28427x+1703ny-47089y=119603-179459
Me tango 28427x+47089y=179459 mai i 28427x+1703ny=119603 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
1703ny-47089y=119603-179459
Tāpiri 28427x ki te -28427x. Ka whakakore atu ngā kupu 28427x me -28427x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(1703n-47089\right)y=119603-179459
Tāpiri 1703ny ki te -47089y.
\left(1703n-47089\right)y=-59856
Tāpiri 119603 ki te -179459.
y=-\frac{59856}{1703n-47089}
Whakawehea ngā taha e rua ki te 1703n-47089.
131x+217\left(-\frac{59856}{1703n-47089}\right)=827
Whakaurua te -\frac{59856}{1703n-47089} mō y ki 131x+217y=827. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
131x-\frac{12988752}{1703n-47089}=827
Whakareatia 217 ki te -\frac{59856}{1703n-47089}.
131x=\frac{131\left(10751n-198121\right)}{1703n-47089}
Me tāpiri \frac{12988752}{1703n-47089} ki ngā taha e rua o te whārite.
x=\frac{10751n-198121}{1703n-47089}
Whakawehea ngā taha e rua ki te 131.
x=\frac{10751n-198121}{1703n-47089},y=-\frac{59856}{1703n-47089}
Kua oti te pūnaha te whakatau.