Whakaoti mō x, y
x = -\frac{17}{7} = -2\frac{3}{7} \approx -2.428571429
y = \frac{39}{4} = 9\frac{3}{4} = 9.75
Graph
Tohaina
Kua tāruatia ki te papatopenga
21x+124=73
Whakaarohia te whārite tuatahi. Tangohia te 11 i te 84, ka 73.
21x=73-124
Tangohia te 124 mai i ngā taha e rua.
21x=-51
Tangohia te 124 i te 73, ka -51.
x=\frac{-51}{21}
Whakawehea ngā taha e rua ki te 21.
x=-\frac{17}{7}
Whakahekea te hautanga \frac{-51}{21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
7\left(-\frac{17}{7}\right)+4y=28-6
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
-17+4y=28-6
Whakareatia te 7 ki te -\frac{17}{7}, ka -17.
-17+4y=22
Tangohia te 6 i te 28, ka 22.
4y=22+17
Me tāpiri te 17 ki ngā taha e rua.
4y=39
Tāpirihia te 22 ki te 17, ka 39.
y=\frac{39}{4}
Whakawehea ngā taha e rua ki te 4.
x=-\frac{17}{7} y=\frac{39}{4}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}