Whakaoti mō y, x
x=7
y=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
2y-3x=-27,5y+3x=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2y-3x=-27
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
2y=3x-27
Me tāpiri 3x ki ngā taha e rua o te whārite.
y=\frac{1}{2}\left(3x-27\right)
Whakawehea ngā taha e rua ki te 2.
y=\frac{3}{2}x-\frac{27}{2}
Whakareatia \frac{1}{2} ki te -27+3x.
5\left(\frac{3}{2}x-\frac{27}{2}\right)+3x=6
Whakakapia te \frac{-27+3x}{2} mō te y ki tērā atu whārite, 5y+3x=6.
\frac{15}{2}x-\frac{135}{2}+3x=6
Whakareatia 5 ki te \frac{-27+3x}{2}.
\frac{21}{2}x-\frac{135}{2}=6
Tāpiri \frac{15x}{2} ki te 3x.
\frac{21}{2}x=\frac{147}{2}
Me tāpiri \frac{135}{2} ki ngā taha e rua o te whārite.
x=7
Whakawehea ngā taha e rua o te whārite ki te \frac{21}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=\frac{3}{2}\times 7-\frac{27}{2}
Whakaurua te 7 mō x ki y=\frac{3}{2}x-\frac{27}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{21-27}{2}
Whakareatia \frac{3}{2} ki te 7.
y=-3
Tāpiri -\frac{27}{2} ki te \frac{21}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=-3,x=7
Kua oti te pūnaha te whakatau.
2y-3x=-27,5y+3x=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\5&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-27\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\5&3\end{matrix}\right))\left(\begin{matrix}2&-3\\5&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&3\end{matrix}\right))\left(\begin{matrix}-27\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\5&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&3\end{matrix}\right))\left(\begin{matrix}-27\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&3\end{matrix}\right))\left(\begin{matrix}-27\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-3\times 5\right)}&-\frac{-3}{2\times 3-\left(-3\times 5\right)}\\-\frac{5}{2\times 3-\left(-3\times 5\right)}&\frac{2}{2\times 3-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-27\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{1}{7}\\-\frac{5}{21}&\frac{2}{21}\end{matrix}\right)\left(\begin{matrix}-27\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\left(-27\right)+\frac{1}{7}\times 6\\-\frac{5}{21}\left(-27\right)+\frac{2}{21}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\7\end{matrix}\right)
Mahia ngā tātaitanga.
y=-3,x=7
Tangohia ngā huānga poukapa y me x.
2y-3x=-27,5y+3x=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 2y+5\left(-3\right)x=5\left(-27\right),2\times 5y+2\times 3x=2\times 6
Kia ōrite ai a 2y me 5y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
10y-15x=-135,10y+6x=12
Whakarūnātia.
10y-10y-15x-6x=-135-12
Me tango 10y+6x=12 mai i 10y-15x=-135 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-15x-6x=-135-12
Tāpiri 10y ki te -10y. Ka whakakore atu ngā kupu 10y me -10y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-21x=-135-12
Tāpiri -15x ki te -6x.
-21x=-147
Tāpiri -135 ki te -12.
x=7
Whakawehea ngā taha e rua ki te -21.
5y+3\times 7=6
Whakaurua te 7 mō x ki 5y+3x=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
5y+21=6
Whakareatia 3 ki te 7.
5y=-15
Me tango 21 mai i ngā taha e rua o te whārite.
y=-3
Whakawehea ngā taha e rua ki te 5.
y=-3,x=7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}