Whakaoti mō y, x
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
y = \frac{7}{4} = 1\frac{3}{4} = 1.75
Graph
Tohaina
Kua tāruatia ki te papatopenga
2y-3x=-4
Whakaarohia te whārite tuatahi. Tangohia te 3x mai i ngā taha e rua.
2y-x=1
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
2y-3x=-4,2y-x=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2y-3x=-4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
2y=3x-4
Me tāpiri 3x ki ngā taha e rua o te whārite.
y=\frac{1}{2}\left(3x-4\right)
Whakawehea ngā taha e rua ki te 2.
y=\frac{3}{2}x-2
Whakareatia \frac{1}{2} ki te 3x-4.
2\left(\frac{3}{2}x-2\right)-x=1
Whakakapia te \frac{3x}{2}-2 mō te y ki tērā atu whārite, 2y-x=1.
3x-4-x=1
Whakareatia 2 ki te \frac{3x}{2}-2.
2x-4=1
Tāpiri 3x ki te -x.
2x=5
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=\frac{5}{2}
Whakawehea ngā taha e rua ki te 2.
y=\frac{3}{2}\times \frac{5}{2}-2
Whakaurua te \frac{5}{2} mō x ki y=\frac{3}{2}x-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{15}{4}-2
Whakareatia \frac{3}{2} ki te \frac{5}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{7}{4}
Tāpiri -2 ki te \frac{15}{4}.
y=\frac{7}{4},x=\frac{5}{2}
Kua oti te pūnaha te whakatau.
2y-3x=-4
Whakaarohia te whārite tuatahi. Tangohia te 3x mai i ngā taha e rua.
2y-x=1
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
2y-3x=-4,2y-x=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-3\times 2\right)}&-\frac{-3}{2\left(-1\right)-\left(-3\times 2\right)}\\-\frac{2}{2\left(-1\right)-\left(-3\times 2\right)}&\frac{2}{2\left(-1\right)-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-4\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{3}{4}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-4\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\left(-4\right)+\frac{3}{4}\\-\frac{1}{2}\left(-4\right)+\frac{1}{2}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{4}\\\frac{5}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
y=\frac{7}{4},x=\frac{5}{2}
Tangohia ngā huānga poukapa y me x.
2y-3x=-4
Whakaarohia te whārite tuatahi. Tangohia te 3x mai i ngā taha e rua.
2y-x=1
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
2y-3x=-4,2y-x=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2y-2y-3x+x=-4-1
Me tango 2y-x=1 mai i 2y-3x=-4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3x+x=-4-1
Tāpiri 2y ki te -2y. Ka whakakore atu ngā kupu 2y me -2y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2x=-4-1
Tāpiri -3x ki te x.
-2x=-5
Tāpiri -4 ki te -1.
x=\frac{5}{2}
Whakawehea ngā taha e rua ki te -2.
2y-\frac{5}{2}=1
Whakaurua te \frac{5}{2} mō x ki 2y-x=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
2y=\frac{7}{2}
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.
y=\frac{7}{4}
Whakawehea ngā taha e rua ki te 2.
y=\frac{7}{4},x=\frac{5}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}