Whakaoti mō y, x
x = -\frac{1320}{7} = -188\frac{4}{7} \approx -188.571428571
y=75
Graph
Tohaina
Kua tāruatia ki te papatopenga
20y+7x=180
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 10.
20y+7x=180,18y+7x=30
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
20y+7x=180
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
20y=-7x+180
Me tango 7x mai i ngā taha e rua o te whārite.
y=\frac{1}{20}\left(-7x+180\right)
Whakawehea ngā taha e rua ki te 20.
y=-\frac{7}{20}x+9
Whakareatia \frac{1}{20} ki te -7x+180.
18\left(-\frac{7}{20}x+9\right)+7x=30
Whakakapia te -\frac{7x}{20}+9 mō te y ki tērā atu whārite, 18y+7x=30.
-\frac{63}{10}x+162+7x=30
Whakareatia 18 ki te -\frac{7x}{20}+9.
\frac{7}{10}x+162=30
Tāpiri -\frac{63x}{10} ki te 7x.
\frac{7}{10}x=-132
Me tango 162 mai i ngā taha e rua o te whārite.
x=-\frac{1320}{7}
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{10}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=-\frac{7}{20}\left(-\frac{1320}{7}\right)+9
Whakaurua te -\frac{1320}{7} mō x ki y=-\frac{7}{20}x+9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=66+9
Whakareatia -\frac{7}{20} ki te -\frac{1320}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=75
Tāpiri 9 ki te 66.
y=75,x=-\frac{1320}{7}
Kua oti te pūnaha te whakatau.
20y+7x=180
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 10.
20y+7x=180,18y+7x=30
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}20&7\\18&7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}180\\30\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}20&7\\18&7\end{matrix}\right))\left(\begin{matrix}20&7\\18&7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}20&7\\18&7\end{matrix}\right))\left(\begin{matrix}180\\30\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}20&7\\18&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}20&7\\18&7\end{matrix}\right))\left(\begin{matrix}180\\30\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}20&7\\18&7\end{matrix}\right))\left(\begin{matrix}180\\30\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{20\times 7-7\times 18}&-\frac{7}{20\times 7-7\times 18}\\-\frac{18}{20\times 7-7\times 18}&\frac{20}{20\times 7-7\times 18}\end{matrix}\right)\left(\begin{matrix}180\\30\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\-\frac{9}{7}&\frac{10}{7}\end{matrix}\right)\left(\begin{matrix}180\\30\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 180-\frac{1}{2}\times 30\\-\frac{9}{7}\times 180+\frac{10}{7}\times 30\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}75\\-\frac{1320}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
y=75,x=-\frac{1320}{7}
Tangohia ngā huānga poukapa y me x.
20y+7x=180
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 10.
20y+7x=180,18y+7x=30
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
20y-18y+7x-7x=180-30
Me tango 18y+7x=30 mai i 20y+7x=180 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
20y-18y=180-30
Tāpiri 7x ki te -7x. Ka whakakore atu ngā kupu 7x me -7x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=180-30
Tāpiri 20y ki te -18y.
2y=150
Tāpiri 180 ki te -30.
y=75
Whakawehea ngā taha e rua ki te 2.
18\times 75+7x=30
Whakaurua te 75 mō y ki 18y+7x=30. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
1350+7x=30
Whakareatia 18 ki te 75.
7x=-1320
Me tango 1350 mai i ngā taha e rua o te whārite.
x=-\frac{1320}{7}
Whakawehea ngā taha e rua ki te 7.
y=75,x=-\frac{1320}{7}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}