Whakaoti mō x_1, x_2, x_3
x_{1}=-1
x_{2}=2
x_{3}=1
Tohaina
Kua tāruatia ki te papatopenga
x_{2}=-2x_{1}-x_{3}+1
Me whakaoti te 2x_{1}+x_{2}+x_{3}=1 mō x_{2}.
2x_{1}-2\left(-2x_{1}-x_{3}+1\right)-x_{3}=-7 4x_{1}-2x_{1}-x_{3}+1+3x_{3}=1
Whakakapia te -2x_{1}-x_{3}+1 mō te x_{2} i te whārite tuarua me te tuatoru.
x_{1}=-\frac{1}{6}x_{3}-\frac{5}{6} x_{3}=-x_{1}
Me whakaoti ēnei whārite mō x_{1} me x_{3} takitahi.
x_{3}=-\left(-\frac{1}{6}x_{3}-\frac{5}{6}\right)
Whakakapia te -\frac{1}{6}x_{3}-\frac{5}{6} mō te x_{1} i te whārite x_{3}=-x_{1}.
x_{3}=1
Me whakaoti te x_{3}=-\left(-\frac{1}{6}x_{3}-\frac{5}{6}\right) mō x_{3}.
x_{1}=-\frac{1}{6}-\frac{5}{6}
Whakakapia te 1 mō te x_{3} i te whārite x_{1}=-\frac{1}{6}x_{3}-\frac{5}{6}.
x_{1}=-1
Tātaitia te x_{1} i te x_{1}=-\frac{1}{6}-\frac{5}{6}.
x_{2}=-2\left(-1\right)-1+1
Whakakapia te -1 mō te x_{1} me te 1 mō x_{3} i te whārite x_{2}=-2x_{1}-x_{3}+1.
x_{2}=2
Tātaitia te x_{2} i te x_{2}=-2\left(-1\right)-1+1.
x_{1}=-1 x_{2}=2 x_{3}=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}