Tīpoka ki ngā ihirangi matua
Whakaoti mō x_1, x_2, x_3
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x_{2}=-2x_{1}-x_{3}+1
Me whakaoti te 2x_{1}+x_{2}+x_{3}=1 mō x_{2}.
2x_{1}-2\left(-2x_{1}-x_{3}+1\right)-x_{3}=-7 4x_{1}-2x_{1}-x_{3}+1+3x_{3}=1
Whakakapia te -2x_{1}-x_{3}+1 mō te x_{2} i te whārite tuarua me te tuatoru.
x_{1}=-\frac{1}{6}x_{3}-\frac{5}{6} x_{3}=-x_{1}
Me whakaoti ēnei whārite mō x_{1} me x_{3} takitahi.
x_{3}=-\left(-\frac{1}{6}x_{3}-\frac{5}{6}\right)
Whakakapia te -\frac{1}{6}x_{3}-\frac{5}{6} mō te x_{1} i te whārite x_{3}=-x_{1}.
x_{3}=1
Me whakaoti te x_{3}=-\left(-\frac{1}{6}x_{3}-\frac{5}{6}\right) mō x_{3}.
x_{1}=-\frac{1}{6}-\frac{5}{6}
Whakakapia te 1 mō te x_{3} i te whārite x_{1}=-\frac{1}{6}x_{3}-\frac{5}{6}.
x_{1}=-1
Tātaitia te x_{1} i te x_{1}=-\frac{1}{6}-\frac{5}{6}.
x_{2}=-2\left(-1\right)-1+1
Whakakapia te -1 mō te x_{1} me te 1 mō x_{3} i te whārite x_{2}=-2x_{1}-x_{3}+1.
x_{2}=2
Tātaitia te x_{2} i te x_{2}=-2\left(-1\right)-1+1.
x_{1}=-1 x_{2}=2 x_{3}=1
Kua oti te pūnaha te whakatau.