Whakaoti mō x_1, x_2
x_{1}=\frac{1}{2}=0.5
x_{2}=2
Tohaina
Kua tāruatia ki te papatopenga
2x_{1}+3x_{2}=7,4x_{1}-4x_{2}=-6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x_{1}+3x_{2}=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x_{1} mā te wehe i te x_{1} i te taha mauī o te tohu ōrite.
2x_{1}=-3x_{2}+7
Me tango 3x_{2} mai i ngā taha e rua o te whārite.
x_{1}=\frac{1}{2}\left(-3x_{2}+7\right)
Whakawehea ngā taha e rua ki te 2.
x_{1}=-\frac{3}{2}x_{2}+\frac{7}{2}
Whakareatia \frac{1}{2} ki te -3x_{2}+7.
4\left(-\frac{3}{2}x_{2}+\frac{7}{2}\right)-4x_{2}=-6
Whakakapia te \frac{-3x_{2}+7}{2} mō te x_{1} ki tērā atu whārite, 4x_{1}-4x_{2}=-6.
-6x_{2}+14-4x_{2}=-6
Whakareatia 4 ki te \frac{-3x_{2}+7}{2}.
-10x_{2}+14=-6
Tāpiri -6x_{2} ki te -4x_{2}.
-10x_{2}=-20
Me tango 14 mai i ngā taha e rua o te whārite.
x_{2}=2
Whakawehea ngā taha e rua ki te -10.
x_{1}=-\frac{3}{2}\times 2+\frac{7}{2}
Whakaurua te 2 mō x_{2} ki x_{1}=-\frac{3}{2}x_{2}+\frac{7}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x_{1} hāngai tonu.
x_{1}=-3+\frac{7}{2}
Whakareatia -\frac{3}{2} ki te 2.
x_{1}=\frac{1}{2}
Tāpiri \frac{7}{2} ki te -3.
x_{1}=\frac{1}{2},x_{2}=2
Kua oti te pūnaha te whakatau.
2x_{1}+3x_{2}=7,4x_{1}-4x_{2}=-6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\4&-4\end{matrix}\right)\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}7\\-6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\4&-4\end{matrix}\right))\left(\begin{matrix}2&3\\4&-4\end{matrix}\right)\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-4\end{matrix}\right))\left(\begin{matrix}7\\-6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\4&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-4\end{matrix}\right))\left(\begin{matrix}7\\-6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-4\end{matrix}\right))\left(\begin{matrix}7\\-6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{2\left(-4\right)-3\times 4}&-\frac{3}{2\left(-4\right)-3\times 4}\\-\frac{4}{2\left(-4\right)-3\times 4}&\frac{2}{2\left(-4\right)-3\times 4}\end{matrix}\right)\left(\begin{matrix}7\\-6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{3}{20}\\\frac{1}{5}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}7\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 7+\frac{3}{20}\left(-6\right)\\\frac{1}{5}\times 7-\frac{1}{10}\left(-6\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x_{1}\\x_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x_{1}=\frac{1}{2},x_{2}=2
Tangohia ngā huānga poukapa x_{1} me x_{2}.
2x_{1}+3x_{2}=7,4x_{1}-4x_{2}=-6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 2x_{1}+4\times 3x_{2}=4\times 7,2\times 4x_{1}+2\left(-4\right)x_{2}=2\left(-6\right)
Kia ōrite ai a 2x_{1} me 4x_{1}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
8x_{1}+12x_{2}=28,8x_{1}-8x_{2}=-12
Whakarūnātia.
8x_{1}-8x_{1}+12x_{2}+8x_{2}=28+12
Me tango 8x_{1}-8x_{2}=-12 mai i 8x_{1}+12x_{2}=28 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12x_{2}+8x_{2}=28+12
Tāpiri 8x_{1} ki te -8x_{1}. Ka whakakore atu ngā kupu 8x_{1} me -8x_{1}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
20x_{2}=28+12
Tāpiri 12x_{2} ki te 8x_{2}.
20x_{2}=40
Tāpiri 28 ki te 12.
x_{2}=2
Whakawehea ngā taha e rua ki te 20.
4x_{1}-4\times 2=-6
Whakaurua te 2 mō x_{2} ki 4x_{1}-4x_{2}=-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x_{1} hāngai tonu.
4x_{1}-8=-6
Whakareatia -4 ki te 2.
4x_{1}=2
Me tāpiri 8 ki ngā taha e rua o te whārite.
x_{1}=\frac{1}{2}
Whakawehea ngā taha e rua ki te 4.
x_{1}=\frac{1}{2},x_{2}=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}