Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x-y=4,3x+y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=y+4
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(y+4\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{1}{2}y+2
Whakareatia \frac{1}{2} ki te y+4.
3\left(\frac{1}{2}y+2\right)+y=1
Whakakapia te \frac{y}{2}+2 mō te x ki tērā atu whārite, 3x+y=1.
\frac{3}{2}y+6+y=1
Whakareatia 3 ki te \frac{y}{2}+2.
\frac{5}{2}y+6=1
Tāpiri \frac{3y}{2} ki te y.
\frac{5}{2}y=-5
Me tango 6 mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{2}\left(-2\right)+2
Whakaurua te -2 mō y ki x=\frac{1}{2}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-1+2
Whakareatia \frac{1}{2} ki te -2.
x=1
Tāpiri 2 ki te -1.
x=1,y=-2
Kua oti te pūnaha te whakatau.
2x-y=4,3x+y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-1\\3&1\end{matrix}\right))\left(\begin{matrix}2&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-1\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\right)}&-\frac{-1}{2-\left(-3\right)}\\-\frac{3}{2-\left(-3\right)}&\frac{2}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\-\frac{3}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 4+\frac{1}{5}\\-\frac{3}{5}\times 4+\frac{2}{5}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-2
Tangohia ngā huānga poukapa x me y.
2x-y=4,3x+y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\left(-1\right)y=3\times 4,2\times 3x+2y=2
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x-3y=12,6x+2y=2
Whakarūnātia.
6x-6x-3y-2y=12-2
Me tango 6x+2y=2 mai i 6x-3y=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-2y=12-2
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=12-2
Tāpiri -3y ki te -2y.
-5y=10
Tāpiri 12 ki te -2.
y=-2
Whakawehea ngā taha e rua ki te -5.
3x-2=1
Whakaurua te -2 mō y ki 3x+y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=3
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 3.
x=1,y=-2
Kua oti te pūnaha te whakatau.