Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x-y=2,3x-2y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=y+2
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(y+2\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{1}{2}y+1
Whakareatia \frac{1}{2} ki te y+2.
3\left(\frac{1}{2}y+1\right)-2y=1
Whakakapia te \frac{y}{2}+1 mō te x ki tērā atu whārite, 3x-2y=1.
\frac{3}{2}y+3-2y=1
Whakareatia 3 ki te \frac{y}{2}+1.
-\frac{1}{2}y+3=1
Tāpiri \frac{3y}{2} ki te -2y.
-\frac{1}{2}y=-2
Me tango 3 mai i ngā taha e rua o te whārite.
y=4
Me whakarea ngā taha e rua ki te -2.
x=\frac{1}{2}\times 4+1
Whakaurua te 4 mō y ki x=\frac{1}{2}y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2+1
Whakareatia \frac{1}{2} ki te 4.
x=3
Tāpiri 1 ki te 2.
x=3,y=4
Kua oti te pūnaha te whakatau.
2x-y=2,3x-2y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-1\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-\left(-3\right)}&-\frac{-1}{2\left(-2\right)-\left(-3\right)}\\-\frac{3}{2\left(-2\right)-\left(-3\right)}&\frac{2}{2\left(-2\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 2-1\\3\times 2-2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=4
Tangohia ngā huānga poukapa x me y.
2x-y=2,3x-2y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\left(-1\right)y=3\times 2,2\times 3x+2\left(-2\right)y=2
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x-3y=6,6x-4y=2
Whakarūnātia.
6x-6x-3y+4y=6-2
Me tango 6x-4y=2 mai i 6x-3y=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y+4y=6-2
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=6-2
Tāpiri -3y ki te 4y.
y=4
Tāpiri 6 ki te -2.
3x-2\times 4=1
Whakaurua te 4 mō y ki 3x-2y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-8=1
Whakareatia -2 ki te 4.
3x=9
Me tāpiri 8 ki ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 3.
x=3,y=4
Kua oti te pūnaha te whakatau.