Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x-y=0,5x-2y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=y
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{2}y
Whakawehea ngā taha e rua ki te 2.
5\times \frac{1}{2}y-2y=1
Whakakapia te \frac{y}{2} mō te x ki tērā atu whārite, 5x-2y=1.
\frac{5}{2}y-2y=1
Whakareatia 5 ki te \frac{y}{2}.
\frac{1}{2}y=1
Tāpiri \frac{5y}{2} ki te -2y.
y=2
Me whakarea ngā taha e rua ki te 2.
x=\frac{1}{2}\times 2
Whakaurua te 2 mō y ki x=\frac{1}{2}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1
Whakareatia \frac{1}{2} ki te 2.
x=1,y=2
Kua oti te pūnaha te whakatau.
2x-y=0,5x-2y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-1\\5&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-\left(-5\right)}&-\frac{-1}{2\left(-2\right)-\left(-5\right)}\\-\frac{5}{2\left(-2\right)-\left(-5\right)}&\frac{2}{2\left(-2\right)-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&1\\-5&2\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Whakareatia ngā poukapa.
x=1,y=2
Tangohia ngā huānga poukapa x me y.
2x-y=0,5x-2y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 2x+5\left(-1\right)y=0,2\times 5x+2\left(-2\right)y=2
Kia ōrite ai a 2x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
10x-5y=0,10x-4y=2
Whakarūnātia.
10x-10x-5y+4y=-2
Me tango 10x-4y=2 mai i 10x-5y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-5y+4y=-2
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=-2
Tāpiri -5y ki te 4y.
y=2
Whakawehea ngā taha e rua ki te -1.
5x-2\times 2=1
Whakaurua te 2 mō y ki 5x-2y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x-4=1
Whakareatia -2 ki te 2.
5x=5
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 5.
x=1,y=2
Kua oti te pūnaha te whakatau.