Whakaoti mō x, y
x=1
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-5x=-1
Whakaarohia te whārite tuarua. Tangohia te 5x mai i ngā taha e rua.
2x-y=-2,-5x+y=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-y=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=y-2
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(y-2\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{1}{2}y-1
Whakareatia \frac{1}{2} ki te y-2.
-5\left(\frac{1}{2}y-1\right)+y=-1
Whakakapia te \frac{y}{2}-1 mō te x ki tērā atu whārite, -5x+y=-1.
-\frac{5}{2}y+5+y=-1
Whakareatia -5 ki te \frac{y}{2}-1.
-\frac{3}{2}y+5=-1
Tāpiri -\frac{5y}{2} ki te y.
-\frac{3}{2}y=-6
Me tango 5 mai i ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua o te whārite ki te -\frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{2}\times 4-1
Whakaurua te 4 mō y ki x=\frac{1}{2}y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2-1
Whakareatia \frac{1}{2} ki te 4.
x=1
Tāpiri -1 ki te 2.
x=1,y=4
Kua oti te pūnaha te whakatau.
y-5x=-1
Whakaarohia te whārite tuarua. Tangohia te 5x mai i ngā taha e rua.
2x-y=-2,-5x+y=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-1\\-5&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-5&1\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-\left(-5\right)\right)}&-\frac{-1}{2-\left(-\left(-5\right)\right)}\\-\frac{-5}{2-\left(-\left(-5\right)\right)}&\frac{2}{2-\left(-\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&-\frac{1}{3}\\-\frac{5}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-2\right)-\frac{1}{3}\left(-1\right)\\-\frac{5}{3}\left(-2\right)-\frac{2}{3}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=4
Tangohia ngā huānga poukapa x me y.
y-5x=-1
Whakaarohia te whārite tuarua. Tangohia te 5x mai i ngā taha e rua.
2x-y=-2,-5x+y=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5\times 2x-5\left(-1\right)y=-5\left(-2\right),2\left(-5\right)x+2y=2\left(-1\right)
Kia ōrite ai a 2x me -5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-10x+5y=10,-10x+2y=-2
Whakarūnātia.
-10x+10x+5y-2y=10+2
Me tango -10x+2y=-2 mai i -10x+5y=10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5y-2y=10+2
Tāpiri -10x ki te 10x. Ka whakakore atu ngā kupu -10x me 10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y=10+2
Tāpiri 5y ki te -2y.
3y=12
Tāpiri 10 ki te 2.
y=4
Whakawehea ngā taha e rua ki te 3.
-5x+4=-1
Whakaurua te 4 mō y ki -5x+y=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-5x=-5
Me tango 4 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -5.
x=1,y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}